[PDF] Neural Networks And Computing Learning Algorithms And Applications - eBooks Review

Neural Networks And Computing Learning Algorithms And Applications


Neural Networks And Computing Learning Algorithms And Applications
DOWNLOAD

Download Neural Networks And Computing Learning Algorithms And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks And Computing Learning Algorithms And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Neural Networks And Computing Learning Algorithms And Applications


Neural Networks And Computing Learning Algorithms And Applications
DOWNLOAD
Author : Tommy Wai-shing Chow
language : en
Publisher: World Scientific
Release Date : 2007-08-13

Neural Networks And Computing Learning Algorithms And Applications written by Tommy Wai-shing Chow and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-13 with Computers categories.


This book covers neural networks with special emphasis on advanced learning methodologies and applications. It includes practical issues of weight initializations, stalling of learning, and escape from a local minima, which have not been covered by many existing books in this area. Additionally, the book highlights the important feature selection problem, which baffles many neural networks practitioners because of the difficulties handling large datasets. It also contains several interesting IT, engineering and bioinformatics applications./a



Process Neural Networks


Process Neural Networks
DOWNLOAD
Author : Xingui He
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-05

Process Neural Networks written by Xingui He and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-05 with Computers categories.


"Process Neural Network: Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks and enhances the expression capability for practical problems, with broad applicability to solving problems relating to processes in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are closely examined. The application methods, network construction principles, and optimization algorithms of process neural networks in practical fields, such as nonlinear time-varying system modeling, process signal pattern recognition, dynamic system identification, and process forecast, are discussed in detail. The information processing flow and the mapping relationship between inputs and outputs of process neural networks are richly illustrated. Xingui He is a member of Chinese Academy of Engineering and also a professor at the School of Electronic Engineering and Computer Science, Peking University, China, where Shaohua Xu also serves as a professor.



Neural Networks And Computing


Neural Networks And Computing
DOWNLOAD
Author : Tommy W. S. Chow
language : en
Publisher: World Scientific
Release Date : 2007

Neural Networks And Computing written by Tommy W. S. Chow and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


This book covers neural networks with special emphasis on advanced learning methodologies and applications. It includes practical issues of weight initializations, stalling of learning, and escape from a local minima, which have not been covered by many existing books in this area. Additionally, the book highlights the important feature selection problem, which baffles many neural networks practitioners because of the difficulties handling large datasets. It also contains several interesting IT, engineering and bioinformatics applications.



Deep Learning Algorithms And Applications


Deep Learning Algorithms And Applications
DOWNLOAD
Author : Witold Pedrycz
language : en
Publisher: Springer Nature
Release Date : 2019-10-23

Deep Learning Algorithms And Applications written by Witold Pedrycz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-23 with Technology & Engineering categories.


This book presents a wealth of deep-learning algorithms and demonstrates their design process. It also highlights the need for a prudent alignment with the essential characteristics of the nature of learning encountered in the practical problems being tackled. Intended for readers interested in acquiring practical knowledge of analysis, design, and deployment of deep learning solutions to real-world problems, it covers a wide range of the paradigm’s algorithms and their applications in diverse areas including imaging, seismic tomography, smart grids, surveillance and security, and health care, among others. Featuring systematic and comprehensive discussions on the development processes, their evaluation, and relevance, the book offers insights into fundamental design strategies for algorithms of deep learning.



Neural Networks Computational Models And Applications


Neural Networks Computational Models And Applications
DOWNLOAD
Author : Huajin Tang
language : en
Publisher: Springer
Release Date : 2010-11-22

Neural Networks Computational Models And Applications written by Huajin Tang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-22 with Computers categories.


Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.



Neural Network Fundamentals With Graphs Algorithms And Applications


Neural Network Fundamentals With Graphs Algorithms And Applications
DOWNLOAD
Author : Nirmal K. Bose
language : en
Publisher: McGraw-Hill Companies
Release Date : 1996

Neural Network Fundamentals With Graphs Algorithms And Applications written by Nirmal K. Bose and has been published by McGraw-Hill Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Computers categories.




Engineering Applications Of Neural Networks


Engineering Applications Of Neural Networks
DOWNLOAD
Author : Giacomo Boracchi
language : en
Publisher: Springer
Release Date : 2017-07-30

Engineering Applications Of Neural Networks written by Giacomo Boracchi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-30 with Computers categories.


This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, Greece, in August 2017. The 40 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 83 submissions. The papers cover the topics of deep learning, convolutional neural networks, image processing, pattern recognition, recommendation systems, machine learning, and applications of Artificial Neural Networks (ANN) applications in engineering, 5G telecommunication networks, and audio signal processing. The volume also includes papers presented at the 6th Mining Humanistic Data Workshop (MHDW 2017) and the 2nd Workshop on 5G-Putting Intelligence to the Network Edge (5G-PINE).



Elements Of Deep Learning For Computer Vision


Elements Of Deep Learning For Computer Vision
DOWNLOAD
Author : Bharat Sikka
language : en
Publisher: BPB Publications
Release Date : 2021-06-24

Elements Of Deep Learning For Computer Vision written by Bharat Sikka and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-24 with Computers categories.


Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ● Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ● Includes graphical representations and illustrations of neural networks and teaches how to program them. ● Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ● Get to know the mechanism of deep learning and how neural networks operate. ● Learn to develop a highly accurate neural network model. ● Access to rich Python libraries to address computer vision challenges. ● Build deep learning models using PyTorch and learn how to deploy using the API. ● Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. TABLE OF CONTENTS 1. An Introduction to Deep Learning 2. Supervised Learning 3. Gradient Descent 4. OpenCV with Python 5. Python Imaging Library and Pillow 6. Introduction to Convolutional Neural Networks 7. GoogLeNet, VGGNet, and ResNet 8. Understanding Object Detection 9. Popular Algorithms for Object Detection 10. Faster RCNN with PyTorch and YoloV4 with Darknet 11. Comparing Algorithms and API Deployment with Flask 12. Applications in Real World



Machine Learning Algorithms And Applications


Machine Learning Algorithms And Applications
DOWNLOAD
Author : Mettu Srinivas
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-10

Machine Learning Algorithms And Applications written by Mettu Srinivas and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-10 with Computers categories.


Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.



Handbook Of Neural Computation


Handbook Of Neural Computation
DOWNLOAD
Author : Pijush Samui
language : en
Publisher: Academic Press
Release Date : 2017-07-18

Handbook Of Neural Computation written by Pijush Samui and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-18 with Technology & Engineering categories.


Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods