[PDF] Neural Networks In Optimization - eBooks Review

Neural Networks In Optimization


Neural Networks In Optimization
DOWNLOAD

Download Neural Networks In Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks In Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Neural Networks In Optimization


Neural Networks In Optimization
DOWNLOAD
Author : Xiang-Sun Zhang
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-10-31

Neural Networks In Optimization written by Xiang-Sun Zhang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-10-31 with Business & Economics categories.


The book consists of three parts. The first part introduces concepts and algorithms in optimization theory, which have been used in neural network research. The second part covers main neural network models and their theoretical analysis. The third part of the book introduces various neural network models for solving nonlinear programming problems and combinatorial optimization problems. Audience: Graduate students and researchers who are interested in the intersection of optimization theory and artificial neural networks. The book is appropriate for graduate courses.



Neural Networks For Optimization And Signal Processing


Neural Networks For Optimization And Signal Processing
DOWNLOAD
Author : Andrzej Cichocki
language : en
Publisher: John Wiley & Sons
Release Date : 1993-06-07

Neural Networks For Optimization And Signal Processing written by Andrzej Cichocki and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-06-07 with Computers categories.


A topical introduction on the ability of artificial neural networks to not only solve on-line a wide range of optimization problems but also to create new techniques and architectures. Provides in-depth coverage of mathematical modeling along with illustrative computer simulation results.



Process Neural Networks


Process Neural Networks
DOWNLOAD
Author : Xingui He
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-05

Process Neural Networks written by Xingui He and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-05 with Computers categories.


"Process Neural Network: Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks and enhances the expression capability for practical problems, with broad applicability to solving problems relating to processes in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are closely examined. The application methods, network construction principles, and optimization algorithms of process neural networks in practical fields, such as nonlinear time-varying system modeling, process signal pattern recognition, dynamic system identification, and process forecast, are discussed in detail. The information processing flow and the mapping relationship between inputs and outputs of process neural networks are richly illustrated. Xingui He is a member of Chinese Academy of Engineering and also a professor at the School of Electronic Engineering and Computer Science, Peking University, China, where Shaohua Xu also serves as a professor.



Neural Networks


Neural Networks
DOWNLOAD
Author : Raul Rojas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Neural Networks written by Raul Rojas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Computers categories.


Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.



Neural Networks In Bioprocessing And Chemical Engineering


Neural Networks In Bioprocessing And Chemical Engineering
DOWNLOAD
Author : D. R. Baughman
language : en
Publisher: Academic Press
Release Date : 2014-06-28

Neural Networks In Bioprocessing And Chemical Engineering written by D. R. Baughman and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Science categories.


Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward mainstream industrial applications. This book introduces the fundamental principles of neural computing, and is the first to focus on its practical applications in bioprocessing and chemical engineering. Examples, problems, and 10 detailed case studies demonstrate how to develop, train, and apply neural networks. A disk containing input data files for all illustrative examples, case studies, and practice problems provides the opportunity for hands-on experience. An important goal of the book is to help the student or practitioner learn and implement neural networks quickly and inexpensively using commercially available, PC-based software tools. Detailed network specifications and training procedures are included for all neural network examples discussed in the book.Each chapter contains an introduction, chapter summary, references to further reading, practice problems, and a section on nomenclatureIncludes a PC-compatible disk containing input data files for examples, case studies, and practice problemsPresents 10 detailed case studiesContains an extensive glossary, explaining terminology used in neural network applications in science and engineeringProvides examples, problems, and ten detailed case studies of neural computing applications, including:Process fault-diagnosis of a chemical reactorLeonardKramer fault-classification problemProcess fault-diagnosis for an unsteady-state continuous stirred-tank reactor systemClassification of protein secondary-structure categoriesQuantitative prediction and regression analysis of complex chemical kineticsSoftware-based sensors for quantitative predictions of product compositions from flourescent spectra in bioprocessingQuality control and optimization of an autoclave curing process for manufacturing composite materialsPredictive modeling of an experimental batch fermentation processSupervisory control of the Tennessee Eastman plantwide control problemPredictive modeling and optimal design of extractive bioseparation in aqueous two-phase systems



Automated Machine Learning


Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17

Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.


This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.



Artificial Higher Order Neural Networks For Modeling And Simulation


Artificial Higher Order Neural Networks For Modeling And Simulation
DOWNLOAD
Author : Zhang, Ming
language : en
Publisher: IGI Global
Release Date : 2012-10-31

Artificial Higher Order Neural Networks For Modeling And Simulation written by Zhang, Ming and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-31 with Computers categories.


"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.



Neural Network Design


Neural Network Design
DOWNLOAD
Author : Martin T. Hagan
language : en
Publisher:
Release Date : 2003

Neural Network Design written by Martin T. Hagan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Neural networks (Computer science) categories.




Nonlinear Optimization Approaches For Training Neural Networks


Nonlinear Optimization Approaches For Training Neural Networks
DOWNLOAD
Author : George Magoulas
language : en
Publisher: Springer
Release Date : 2015-12-24

Nonlinear Optimization Approaches For Training Neural Networks written by George Magoulas and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-24 with Mathematics categories.


This book examines how nonlinear optimization techniques can be applied to training and testing neural networks. It includes both well-known and recently-developed network training methods including deterministic nonlinear optimization methods, stochastic nonlinear optimization methods, and advanced training schemes which combine both deterministic and stochastic components. The convergence analysis and convergence proofs of these techniques are presented as well as real applications of neural networks in areas such as pattern classification, bioinformatics, biomedicine, and finance. Nonlinear optimization methods are applied extensively in the design of training protocols for artificial neural networks used in industry and academia. Such techniques allow for the implementation of dynamic unsupervised neural network training without requiring the fine tuning of several heuristic parameters. "Nonlinear Optimization Approaches for Training Neural Networks" is a response to the growing demand for innovations in this area of research. This monograph presents a wide range of approaches to neural networks training providing theoretical justification for network behavior based on the theory of nonlinear optimization. It presents training algorithms, and theoretical results on their convergence and implementations through pseudocode. This approach offers the reader an explanation of the performance of the various methods, and a better understanding of the individual characteristics of the various methods, their differences/advantages and interrelationships. This improved perspective allows the reader to choose the best network training method without spending too much effort configuring highly sensitive heuristic parameters. This book can serve as an excellent guide for researchers, graduate students, and lecturers interested in the development of neural networks and their training.