[PDF] New Directions On Model Predictive Control - eBooks Review

New Directions On Model Predictive Control


New Directions On Model Predictive Control
DOWNLOAD

Download New Directions On Model Predictive Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Directions On Model Predictive Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



New Directions On Model Predictive Control


New Directions On Model Predictive Control
DOWNLOAD
Author : Jinfeng Liu
language : en
Publisher: MDPI
Release Date : 2019-01-16

New Directions On Model Predictive Control written by Jinfeng Liu and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-16 with Technology & Engineering categories.


This book is a printed edition of the Special Issue "New Directions on Model Predictive Control" that was published in Mathematics



Assessment And Future Directions Of Nonlinear Model Predictive Control


Assessment And Future Directions Of Nonlinear Model Predictive Control
DOWNLOAD
Author : Rolf Findeisen
language : en
Publisher: Springer
Release Date : 2007-09-08

Assessment And Future Directions Of Nonlinear Model Predictive Control written by Rolf Findeisen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-08 with Technology & Engineering categories.


Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.



New Directions In Bioprocess Modeling And Control


New Directions In Bioprocess Modeling And Control
DOWNLOAD
Author : Michael A. Boudreau
language : en
Publisher: ISA
Release Date : 2007

New Directions In Bioprocess Modeling And Control written by Michael A. Boudreau and has been published by ISA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Science categories.


Models offer benefits even before they are put on line. Based on years of experience, the authors reveal in New Directions in Bioprocess Modeling and Control that significant improvements can result from the process knowledge and insight that are gained when building experimental and first-principle models for process monitoring and control. Doing modeling in the process development and early commercialization phases is advantageous because it increases process efficiency and provides ongoing opportunities for improving process control. This technology is important for maximizing benefits from analyzers and control tool investments. If you are a process design, quality control, information systems, or automation engineer in the biopharmaceutical, brewing, or bio-fuel industry, this handy resource will help you define, develop, and apply a virtual plant, model predictive control, first-principle models, neural networks, and multivariate statistical process control. The synergistic knowledge discovery on bench top or pilot plant scale can be ported to industrial scale processes. This learning process is consistent with the intent in the Process Analyzer and Process Control Tools sections of the FDA_s Guidance for Industry PAT _ A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance. It states in the Process Analyzer section of the FDA_s guidance: _For certain applications, sensor-based measurements can provide a useful process signature that may be related to the underlying process steps or transformations. Based on the level of process understanding these signatures may also be useful for the process monitoring, control, and end point determination when these patterns or signatures relate to product and process quality._



Model Predictive Control In The Process Industry


Model Predictive Control In The Process Industry
DOWNLOAD
Author : Eduardo F. Camacho
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Model Predictive Control In The Process Industry written by Eduardo F. Camacho and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.


Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.



Model Predictive Control


Model Predictive Control
DOWNLOAD
Author : Eduardo F. Camacho
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-01-10

Model Predictive Control written by Eduardo F. Camacho and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-10 with Technology & Engineering categories.


The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.



Nonlinear Model Predictive Control


Nonlinear Model Predictive Control
DOWNLOAD
Author : Lalo Magni
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-05-25

Nonlinear Model Predictive Control written by Lalo Magni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-05-25 with Technology & Engineering categories.


Over the past few years significant progress has been achieved in the field of nonlinear model predictive control (NMPC), also referred to as receding horizon control or moving horizon control. More than 250 papers have been published in 2006 in ISI Journals. With this book we want to bring together the contributions of a diverse group of internationally well recognized researchers and industrial practitioners, to critically assess the current status of the NMPC field and to discuss future directions and needs. The book consists of selected papers presented at the International Workshop on Assessment an Future Directions of Nonlinear Model Predictive Control that took place from September 5 to 9, 2008, in Pavia, Italy.



Explicit Nonlinear Model Predictive Control


Explicit Nonlinear Model Predictive Control
DOWNLOAD
Author : Alexandra Grancharova
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-03-23

Explicit Nonlinear Model Predictive Control written by Alexandra Grancharova and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-23 with Technology & Engineering categories.


Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.



Nonlinear Model Predictive Control


Nonlinear Model Predictive Control
DOWNLOAD
Author : Frank Allgöwer
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

Nonlinear Model Predictive Control written by Frank Allgöwer and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


During the past decade model predictive control (MPC), also referred to as receding horizon control or moving horizon control, has become the preferred control strategy for quite a number of industrial processes. There have been many significant advances in this area over the past years, one of the most important ones being its extension to nonlinear systems. This book gives an up-to-date assessment of the current state of the art in the new field of nonlinear model predictive control (NMPC). The main topic areas that appear to be of central importance for NMPC are covered, namely receding horizon control theory, modeling for NMPC, computational aspects of on-line optimization and application issues. The book consists of selected papers presented at the International Symposium on Nonlinear Model Predictive Control – Assessment and Future Directions, which took place from June 3 to 5, 1998, in Ascona, Switzerland. The book is geared towards researchers and practitioners in the area of control engineering and control theory. It is also suited for postgraduate students as the book contains several overview articles that give a tutorial introduction into the various aspects of nonlinear model predictive control, including systems theory, computations, modeling and applications.



Distributed Model Predictive Control Made Easy


Distributed Model Predictive Control Made Easy
DOWNLOAD
Author : José M. Maestre
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-10

Distributed Model Predictive Control Made Easy written by José M. Maestre and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-10 with Technology & Engineering categories.


The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.



Nonlinear Model Predictive Control


Nonlinear Model Predictive Control
DOWNLOAD
Author : Lars Grüne
language : en
Publisher: Springer
Release Date : 2016-11-09

Nonlinear Model Predictive Control written by Lars Grüne and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-09 with Technology & Engineering categories.


This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. The second edition has been substantially rewritten, edited and updated to reflect the significant advances that have been made since the publication of its predecessor, including: • a new chapter on economic NMPC relaxing the assumption that the running cost penalizes the distance to a pre-defined equilibrium; • a new chapter on distributed NMPC discussing methods which facilitate the control of large-scale systems by splitting up the optimization into smaller subproblems; • an extended discussion of stability and performance using approximate updates rather than full optimization; • replacement of the pivotal sufficient condition for stability without stabilizing terminal conditions with a weaker alternative and inclusion of an alternative and much simpler proof in the analysis; and • further variations and extensions in response to suggestions from readers of the first edition. Though primarily aimed at academic researchers and practitioners working in control and optimization, the text is self-contained, featuring background material on infinite-horizon optimal control and Lyapunov stability theory that also makes it accessible for graduate students in control engineering and applied mathematics.