[PDF] Newton Type Methods For Optimization And Variational Problems - eBooks Review

Newton Type Methods For Optimization And Variational Problems


Newton Type Methods For Optimization And Variational Problems
DOWNLOAD

Download Newton Type Methods For Optimization And Variational Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Newton Type Methods For Optimization And Variational Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Newton Type Methods For Optimization And Variational Problems


Newton Type Methods For Optimization And Variational Problems
DOWNLOAD
Author : Alexey F. Izmailov
language : en
Publisher: Springer
Release Date : 2014-07-08

Newton Type Methods For Optimization And Variational Problems written by Alexey F. Izmailov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-08 with Business & Economics categories.


This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.



Semismooth Newton Methods For Variational Inequalities And Constrained Optimization Problems In Function Spaces


Semismooth Newton Methods For Variational Inequalities And Constrained Optimization Problems In Function Spaces
DOWNLOAD
Author : Michael Ulbrich
language : en
Publisher: SIAM
Release Date : 2011-01-01

Semismooth Newton Methods For Variational Inequalities And Constrained Optimization Problems In Function Spaces written by Michael Ulbrich and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-01 with Mathematics categories.


Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods.



Lagrange Multiplier Approach To Variational Problems And Applications


Lagrange Multiplier Approach To Variational Problems And Applications
DOWNLOAD
Author : Kazufumi Ito
language : en
Publisher: SIAM
Release Date : 2008-01-01

Lagrange Multiplier Approach To Variational Problems And Applications written by Kazufumi Ito and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-01 with Mathematics categories.


Lagrange multiplier theory provides a tool for the analysis of a general class of nonlinear variational problems and is the basis for developing efficient and powerful iterative methods for solving these problems. This comprehensive monograph analyzes Lagrange multiplier theory and shows its impact on the development of numerical algorithms for problems posed in a function space setting. The authors develop and analyze efficient algorithms for constrained optimization and convex optimization problems based on the augumented Lagrangian concept and cover such topics as sensitivity analysis, convex optimization, second order methods, and shape sensitivity calculus. General theory is applied to challenging problems in optimal control of partial differential equations, image analysis, mechanical contact and friction problems, and American options for the Black-Scholes model.



Convex Analysis And Variational Problems


Convex Analysis And Variational Problems
DOWNLOAD
Author : Ivar Ekeland
language : en
Publisher: SIAM
Release Date : 1999-12-01

Convex Analysis And Variational Problems written by Ivar Ekeland and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-12-01 with Mathematics categories.


This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.



Nonlinear Analysis And Variational Problems


Nonlinear Analysis And Variational Problems
DOWNLOAD
Author : Panos M. Pardalos
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-10-20

Nonlinear Analysis And Variational Problems written by Panos M. Pardalos and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-20 with Business & Economics categories.


The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.



Variational Methods In Shape Optimization Problems


Variational Methods In Shape Optimization Problems
DOWNLOAD
Author : Dorin Bucur
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-13

Variational Methods In Shape Optimization Problems written by Dorin Bucur and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-13 with Mathematics categories.


Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.



Complementarity And Variational Problems


Complementarity And Variational Problems
DOWNLOAD
Author : Michael C. Ferris
language : en
Publisher: SIAM
Release Date : 1997-01-01

Complementarity And Variational Problems written by Michael C. Ferris and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-01-01 with Mathematics categories.


After more than three decades of research, the subject of complementarity problems and its numerous extensions has become a well-established and fruitful discipline within mathematical programming and applied mathematics. Sources of these problems are diverse and span numerous areas in engineering, economics, and the sciences. Includes refereed articles.



Lectures On Convex Optimization


Lectures On Convex Optimization
DOWNLOAD
Author : Yurii Nesterov
language : en
Publisher: Springer
Release Date : 2018-11-19

Lectures On Convex Optimization written by Yurii Nesterov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-19 with Mathematics categories.


This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.



Nonlinear Programming And Variational Inequality Problems


Nonlinear Programming And Variational Inequality Problems
DOWNLOAD
Author : Michael Patriksson
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Nonlinear Programming And Variational Inequality Problems written by Michael Patriksson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.


Since I started working in the area of nonlinear programming and, later on, variational inequality problems, I have frequently been surprised to find that many algorithms, however scattered in numerous journals, monographs and books, and described rather differently, are closely related to each other. This book is meant to help the reader understand and relate algorithms to each other in some intuitive fashion, and represents, in this respect, a consolidation of the field. The framework of algorithms presented in this book is called Cost Approxi mation. (The preface of the Ph.D. thesis [Pat93d] explains the background to the work that lead to the thesis, and ultimately to this book.) It describes, for a given formulation of a variational inequality or nonlinear programming problem, an algorithm by means of approximating mappings and problems, a principle for the update of the iteration points, and a merit function which guides and monitors the convergence of the algorithm. One purpose of this book is to offer this framework as an intuitively appeal ing tool for describing an algorithm. One of the advantages of the framework, or any reasonable framework for that matter, is that two algorithms may be easily related and compared through its use. This framework is particular in that it covers a vast number of methods, while still being fairly detailed; the level of abstraction is in fact the same as that of the original problem statement.



Second Order Variational Analysis In Optimization Variational Stability And Control


Second Order Variational Analysis In Optimization Variational Stability And Control
DOWNLOAD
Author : Boris S. Mordukhovich
language : en
Publisher: Springer Nature
Release Date : 2024-05-21

Second Order Variational Analysis In Optimization Variational Stability And Control written by Boris S. Mordukhovich and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-21 with Mathematics categories.


This fundamental work is a sequel to monographs by the same author: Variational Analysis and Applications (2018) and the two Grundlehren volumes Variational Analysis and Generalized Differentiation: I Basic Theory, II Applications (2006). This present book is the first entirely devoted to second-order variational analysis with numerical algorithms and applications to practical models. It covers a wide range of topics including theoretical, numerical, and implementations that will interest researchers in analysis, applied mathematics, mathematical economics, engineering, and optimization. Inclusion of a variety of exercises and commentaries in each chapter allows the book to be used effectively in a course on this subject. This area has been well recognized as an important and rapidly developing area of nonlinear analysis and optimization with numerous applications. Consisting of 9 interrelated chapters, the book is self-contained with the inclusion of some preliminaries in Chapter 1. Results presented are useful tools for characterizations of fundamental notions of variational stability of solutions for diverse classes of problems in optimization and optimal control, the study of variational convexity of extended-real-valued functions and their specifications and variational sufficiency in optimization. Explicit calculations and important applications of second-order subdifferentials associated with the achieved characterizations of variational stability and related concepts, to the design and justification of second-order numerical algorithms for solving various classes of optimization problems, nonsmooth equations, and subgradient systems, are included. Generalized Newtonian algorithms are presented that show local and global convergence with linear, superlinear, and quadratic convergence rates. Algorithms are implemented to address interesting practical problems from the fields of machine learning, statistics, imaging, and other areas.