[PDF] Nodal Discontinuous Galerkin Methods - eBooks Review

Nodal Discontinuous Galerkin Methods


Nodal Discontinuous Galerkin Methods
DOWNLOAD

Download Nodal Discontinuous Galerkin Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nodal Discontinuous Galerkin Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Nodal Discontinuous Galerkin Methods


Nodal Discontinuous Galerkin Methods
DOWNLOAD
Author : Jan S. Hesthaven
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-18

Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-18 with Mathematics categories.


This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.



Nodal Discontinuous Galerkin Methods


Nodal Discontinuous Galerkin Methods
DOWNLOAD
Author : Jan S. Hesthaven
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-20

Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-20 with Mathematics categories.


This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.



An Introduction To Element Based Galerkin Methods On Tensor Product Bases


An Introduction To Element Based Galerkin Methods On Tensor Product Bases
DOWNLOAD
Author : Francis X. Giraldo
language : en
Publisher: Springer
Release Date : 2021-11-01

An Introduction To Element Based Galerkin Methods On Tensor Product Bases written by Francis X. Giraldo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-01 with Mathematics categories.


This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.



Discontinuous Galerkin Methods


Discontinuous Galerkin Methods
DOWNLOAD
Author : Bernardo Cockburn
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Discontinuous Galerkin Methods written by Bernardo Cockburn and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.



Adaptive High Order Methods In Computational Fluid Dynamics


Adaptive High Order Methods In Computational Fluid Dynamics
DOWNLOAD
Author : Z. J. Wang
language : en
Publisher: World Scientific
Release Date : 2011

Adaptive High Order Methods In Computational Fluid Dynamics written by Z. J. Wang and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Science categories.


This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.



The Finite Element Method Theory Implementation And Applications


The Finite Element Method Theory Implementation And Applications
DOWNLOAD
Author : Mats G. Larson
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-01-13

The Finite Element Method Theory Implementation And Applications written by Mats G. Larson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-13 with Computers categories.


This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​



Galerkin Finite Element Methods For Parabolic Problems


Galerkin Finite Element Methods For Parabolic Problems
DOWNLOAD
Author : Vidar Thomee
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

Galerkin Finite Element Methods For Parabolic Problems written by Vidar Thomee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.



Numerical Solution Of Partial Differential Equations By The Finite Element Method


Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD
Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23

Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.


An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.



An Introduction To Meshfree Methods And Their Programming


An Introduction To Meshfree Methods And Their Programming
DOWNLOAD
Author : G.R. Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-12-05

An Introduction To Meshfree Methods And Their Programming written by G.R. Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-05 with Technology & Engineering categories.


The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.



The Hybrid High Order Method For Polytopal Meshes


The Hybrid High Order Method For Polytopal Meshes
DOWNLOAD
Author : Daniele Antonio Di Pietro
language : en
Publisher: Springer Nature
Release Date : 2020-04-03

The Hybrid High Order Method For Polytopal Meshes written by Daniele Antonio Di Pietro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-03 with Mathematics categories.


This monograph provides an introduction to the design and analysis of Hybrid High-Order methods for diffusive problems, along with a panel of applications to advanced models in computational mechanics. Hybrid High-Order methods are new-generation numerical methods for partial differential equations with features that set them apart from traditional ones. These include: the support of polytopal meshes, including non-star-shaped elements and hanging nodes; the possibility of having arbitrary approximation orders in any space dimension; an enhanced compliance with the physics; and a reduced computational cost thanks to compact stencil and static condensation. The first part of the monograph lays the foundations of the method, considering linear scalar second-order models, including scalar diffusion – possibly heterogeneous and anisotropic – and diffusion-advection-reaction. The second part addresses applications to more complex models from the engineering sciences: non-linear Leray-Lions problems, elasticity, and incompressible fluid flows. This book is primarily intended for graduate students and researchers in applied mathematics and numerical analysis, who will find here valuable analysis tools of general scope.