[PDF] Non Bayesian Decision Theory - eBooks Review

Non Bayesian Decision Theory


Non Bayesian Decision Theory
DOWNLOAD

Download Non Bayesian Decision Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Non Bayesian Decision Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Non Bayesian Decision Theory


Non Bayesian Decision Theory
DOWNLOAD
Author : Martin Peterson
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-06

Non Bayesian Decision Theory written by Martin Peterson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-06 with Science categories.


For quite some time, philosophers, economists, and statisticians have endorsed a view on rational choice known as Bayesianism. The work on this book has grown out of a feeling that the Bayesian view has come to dominate the academic com- nitytosuchanextentthatalternative,non-Bayesianpositionsareseldomextensively researched. Needless to say, I think this is a pity. Non-Bayesian positions deserve to be examined with much greater care, and the present work is an attempt to defend what I believe to be a coherent and reasonably detailed non-Bayesian account of decision theory. The main thesis I defend can be summarised as follows. Rational agents m- imise subjective expected utility, but contrary to what is claimed by Bayesians, ut- ity and subjective probability should not be de?ned in terms of preferences over uncertain prospects. On the contrary, rational decision makers need only consider preferences over certain outcomes. It will be shown that utility and probability fu- tions derived in a non-Bayesian manner can be used for generating preferences over uncertain prospects, that support the principle of maximising subjective expected utility. To some extent, this non-Bayesian view gives an account of what modern - cision theory could have been like, had decision theorists not entered the Bayesian path discovered by Ramsey, de Finetti, Savage, and others. I will not discuss all previous non-Bayesian positions presented in the literature.



An Introduction To Decision Theory


An Introduction To Decision Theory
DOWNLOAD
Author : Martin Peterson
language : en
Publisher: Cambridge University Press
Release Date : 2017-03-30

An Introduction To Decision Theory written by Martin Peterson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-30 with Business & Economics categories.


A comprehensive and accessible introduction to all aspects of decision theory, now with new and updated discussions and over 140 exercises.



Frontiers Of Statistical Decision Making And Bayesian Analysis


Frontiers Of Statistical Decision Making And Bayesian Analysis
DOWNLOAD
Author : Ming-Hui Chen
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-24

Frontiers Of Statistical Decision Making And Bayesian Analysis written by Ming-Hui Chen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-24 with Mathematics categories.


Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.



Decision Theory As Philosophy


Decision Theory As Philosophy
DOWNLOAD
Author : Mark Kaplan
language : en
Publisher: Cambridge University Press
Release Date : 1996

Decision Theory As Philosophy written by Mark Kaplan and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Philosophy categories.


Kaplan presents an accessible new variant on Bayesian decision theory.



Statistical Decision Theory And Related Topics V


Statistical Decision Theory And Related Topics V
DOWNLOAD
Author : Shanti S. Gupta
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Statistical Decision Theory And Related Topics V written by Shanti S. Gupta and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.


The Fifth Purdue International Symposium on Statistical Decision The was held at Purdue University during the period of ory and Related Topics June 14-19,1992. The symposium brought together many prominent leaders and younger researchers in statistical decision theory and related areas. The format of the Fifth Symposium was different from the previous symposia in that in addition to the 54 invited papers, there were 81 papers presented in contributed paper sessions. Of the 54 invited papers presented at the sym posium, 42 are collected in this volume. The papers are grouped into a total of six parts: Part 1 - Retrospective on Wald's Decision Theory and Sequential Analysis; Part 2 - Asymptotics and Nonparametrics; Part 3 - Bayesian Analysis; Part 4 - Decision Theory and Selection Procedures; Part 5 - Probability and Probabilistic Structures; and Part 6 - Sequential, Adaptive, and Filtering Problems. While many of the papers in the volume give the latest theoretical developments in these areas, a large number are either applied or creative review papers.



Bayesian Theory


Bayesian Theory
DOWNLOAD
Author : José M. Bernardo
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25

Bayesian Theory written by José M. Bernardo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.


This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics



Statistical Decision Theory And Bayesian Analysis


Statistical Decision Theory And Bayesian Analysis
DOWNLOAD
Author : James O. Berger
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Statistical Decision Theory And Bayesian Analysis written by James O. Berger and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.



Theory Of Decision Under Uncertainty


Theory Of Decision Under Uncertainty
DOWNLOAD
Author : Itzhak Gilboa
language : en
Publisher: Cambridge University Press
Release Date : 2009-03-16

Theory Of Decision Under Uncertainty written by Itzhak Gilboa and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-16 with Business & Economics categories.


This book describes the classical axiomatic theories of decision under uncertainty, as well as critiques thereof and alternative theories. It focuses on the meaning of probability, discussing some definitions and surveying their scope of applicability. The behavioral definition of subjective probability serves as a way to present the classical theories, culminating in Savage's theorem. The limitations of this result as a definition of probability lead to two directions - first, similar behavioral definitions of more general theories, such as non-additive probabilities and multiple priors, and second, cognitive derivations based on case-based techniques.



Decision Making With Imperfect Decision Makers


Decision Making With Imperfect Decision Makers
DOWNLOAD
Author : Tatiana Valentine Guy
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-11-13

Decision Making With Imperfect Decision Makers written by Tatiana Valentine Guy and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-13 with Technology & Engineering categories.


Prescriptive Bayesian decision making has reached a high level of maturity and is well-supported algorithmically. However, experimental data shows that real decision makers choose such Bayes-optimal decisions surprisingly infrequently, often making decisions that are badly sub-optimal. So prevalent is such imperfect decision-making that it should be accepted as an inherent feature of real decision makers living within interacting societies. To date such societies have been investigated from an economic and gametheoretic perspective, and even to a degree from a physics perspective. However, little research has been done from the perspective of computer science and associated disciplines like machine learning, information theory and neuroscience. This book is a major contribution to such research. Some of the particular topics addressed include: How should we formalise rational decision making of a single imperfect decision maker? Does the answer change for a system of imperfect decision makers? Can we extend existing prescriptive theories for perfect decision makers to make them useful for imperfect ones? How can we exploit the relation of these problems to the control under varying and uncertain resources constraints as well as to the problem of the computational decision making? What can we learn from natural, engineered, and social systems to help us address these issues?



Bayesian Data Analysis Third Edition


Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01

Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.


Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.