[PDF] Noncommutative Geometry Quantum Fields And Motives - eBooks Review

Noncommutative Geometry Quantum Fields And Motives


Noncommutative Geometry Quantum Fields And Motives
DOWNLOAD

Download Noncommutative Geometry Quantum Fields And Motives PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Noncommutative Geometry Quantum Fields And Motives book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Noncommutative Geometry Quantum Fields And Motives


Noncommutative Geometry Quantum Fields And Motives
DOWNLOAD
Author : Alain Connes
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-03-13

Noncommutative Geometry Quantum Fields And Motives written by Alain Connes and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-13 with Mathematics categories.


The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.



Noncommutative Geometry Quantum Fields And Motives


Noncommutative Geometry Quantum Fields And Motives
DOWNLOAD
Author : Alain Connes
language : en
Publisher: American Mathematical Soc.
Release Date :

Noncommutative Geometry Quantum Fields And Motives written by Alain Connes and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


This book carries the unifying theme of the interaction among noncommutative geometry, theoretical physics and number theory. The detailed text, co-authored by Fields Medal winner Alain Connes, stresses the relevance of noncommutative geometry in dealing with two spaces: space-time and the space of prime numbers. The book includes significantly more detail than other monographs covering similar topics.



Structural Aspects Of Quantum Field Theory And Noncommutative Geometry Second Edition In 2 Volumes


Structural Aspects Of Quantum Field Theory And Noncommutative Geometry Second Edition In 2 Volumes
DOWNLOAD
Author : Gerhard Grensing
language : en
Publisher: World Scientific
Release Date : 2021-07-15

Structural Aspects Of Quantum Field Theory And Noncommutative Geometry Second Edition In 2 Volumes written by Gerhard Grensing and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-15 with Science categories.


The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.



Noncommutative Geometry


Noncommutative Geometry
DOWNLOAD
Author : Alain Connes
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-12-08

Noncommutative Geometry written by Alain Connes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-12-08 with Mathematics categories.


Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.



Quantum Field Theory And Noncommutative Geometry


Quantum Field Theory And Noncommutative Geometry
DOWNLOAD
Author : Ursula Carow-Watamura
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-02-21

Quantum Field Theory And Noncommutative Geometry written by Ursula Carow-Watamura and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-02-21 with Mathematics categories.


This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.



Feynman Motives


Feynman Motives
DOWNLOAD
Author : Matilde Marcolli
language : en
Publisher: World Scientific
Release Date : 2010

Feynman Motives written by Matilde Marcolli and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Science categories.


This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.



An Invitation To Noncommutative Geometry


An Invitation To Noncommutative Geometry
DOWNLOAD
Author : Matilde Marcolli
language : en
Publisher: World Scientific
Release Date : 2008-02-11

An Invitation To Noncommutative Geometry written by Matilde Marcolli and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-11 with Science categories.


This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.



Elements Of Noncommutative Geometry


Elements Of Noncommutative Geometry
DOWNLOAD
Author : Jose M. Gracia-Bondia
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-27

Elements Of Noncommutative Geometry written by Jose M. Gracia-Bondia and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-27 with Mathematics categories.




Quantization Geometry And Noncommutative Structures In Mathematics And Physics


Quantization Geometry And Noncommutative Structures In Mathematics And Physics
DOWNLOAD
Author : Alexander Cardona
language : en
Publisher: Springer
Release Date : 2017-10-26

Quantization Geometry And Noncommutative Structures In Mathematics And Physics written by Alexander Cardona and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-26 with Science categories.


This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.



Noncommutative Geometry And Particle Physics


Noncommutative Geometry And Particle Physics
DOWNLOAD
Author : Walter D. van Suijlekom
language : en
Publisher: Springer
Release Date : 2014-07-21

Noncommutative Geometry And Particle Physics written by Walter D. van Suijlekom and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-21 with Science categories.


This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.