[PDF] Nonlinear Differential Equations And Dynamical Systems - eBooks Review

Nonlinear Differential Equations And Dynamical Systems


Nonlinear Differential Equations And Dynamical Systems
DOWNLOAD

Download Nonlinear Differential Equations And Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Differential Equations And Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Nonlinear Differential Equations And Dynamical Systems


Nonlinear Differential Equations And Dynamical Systems
DOWNLOAD
Author : Ferdinand Verhulst
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Nonlinear Differential Equations And Dynamical Systems written by Ferdinand Verhulst and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.



Nonlinear Differential Equations And Dynamical Systems


Nonlinear Differential Equations And Dynamical Systems
DOWNLOAD
Author : Ferdinand Verhulst
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-20

Nonlinear Differential Equations And Dynamical Systems written by Ferdinand Verhulst and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-20 with Mathematics categories.


For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.



Nonlinear Differential Equations And Dynamical Systems


Nonlinear Differential Equations And Dynamical Systems
DOWNLOAD
Author : Feliz Manuel Minhós
language : en
Publisher: MDPI
Release Date : 2021-04-15

Nonlinear Differential Equations And Dynamical Systems written by Feliz Manuel Minhós and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-15 with Mathematics categories.


This Special Edition contains new results on Differential and Integral Equations and Systems, covering higher-order Initial and Boundary Value Problems, fractional differential and integral equations and applications, non-local optimal control, inverse, and higher-order nonlinear boundary value problems, distributional solutions in the form of a finite series of the Dirac delta function and its derivatives, asymptotic properties’ oscillatory theory for neutral nonlinear differential equations, the existence of extremal solutions via monotone iterative techniques, predator–prey interaction via fractional-order models, among others. Our main goal is not only to show new trends in this field but also to showcase and provide new methods and techniques that can lead to future research.



Differential Equations And Dynamical Systems


Differential Equations And Dynamical Systems
DOWNLOAD
Author : Lawrence Perko
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Differential Equations And Dynamical Systems written by Lawrence Perko and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.



Non Linear Differential Equations And Dynamical Systems


Non Linear Differential Equations And Dynamical Systems
DOWNLOAD
Author : LUIS MANUEL. BRAGA DA COSTA CAMPOS
language : en
Publisher:
Release Date : 2024-06-25

Non Linear Differential Equations And Dynamical Systems written by LUIS MANUEL. BRAGA DA COSTA CAMPOS and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-25 with categories.


This the second book of Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-Volume Set, in the Mathematics and Physics for Science and Technology series. This book considers general first-order differential equations, including non-linear and with variable coefficients.



Differential Equations Dynamical Systems And An Introduction To Chaos


Differential Equations Dynamical Systems And An Introduction To Chaos
DOWNLOAD
Author : Morris W. Hirsch
language : en
Publisher: Academic Press
Release Date : 2004

Differential Equations Dynamical Systems And An Introduction To Chaos written by Morris W. Hirsch and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Business & Economics categories.


Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.



Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields


Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields
DOWNLOAD
Author : John Guckenheimer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21

Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields written by John Guckenheimer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Mathematics categories.


From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning `strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2



Differential Dynamical Systems Revised Edition


Differential Dynamical Systems Revised Edition
DOWNLOAD
Author : James D. Meiss
language : en
Publisher: SIAM
Release Date : 2017-01-24

Differential Dynamical Systems Revised Edition written by James D. Meiss and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-24 with Mathematics categories.


Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.



Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis


Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis
DOWNLOAD
Author : Denis Blackmore
language : en
Publisher: World Scientific
Release Date : 2011-03-04

Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis written by Denis Blackmore and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-04 with Mathematics categories.


This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.