Nonlinear Oscillations Of Hamiltonian Pdes

DOWNLOAD
Download Nonlinear Oscillations Of Hamiltonian Pdes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Oscillations Of Hamiltonian Pdes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Nonlinear Oscillations Of Hamiltonian Pdes
DOWNLOAD
Author : Massimiliano Berti
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-01
Nonlinear Oscillations Of Hamiltonian Pdes written by Massimiliano Berti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-01 with Mathematics categories.
Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.
Hamiltonian Dynamical Systems And Applications
DOWNLOAD
Author : Walter Craig
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-02-17
Hamiltonian Dynamical Systems And Applications written by Walter Craig and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-17 with Mathematics categories.
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
Numerical Continuation And Bifurcation In Nonlinear Pdes
DOWNLOAD
Author : Hannes Uecker
language : en
Publisher: SIAM
Release Date : 2021-08-19
Numerical Continuation And Bifurcation In Nonlinear Pdes written by Hannes Uecker and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-19 with Mathematics categories.
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Nonlinear Equations For Beams And Degenerate Plates With Piers
DOWNLOAD
Author : Maurizio Garrione
language : en
Publisher: Springer Nature
Release Date : 2019-10-31
Nonlinear Equations For Beams And Degenerate Plates With Piers written by Maurizio Garrione and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-31 with Mathematics categories.
This book develops a full theory for hinged beams and degenerate plates with multiple intermediate piers with the final purpose of understanding the stability of suspension bridges. New models are proposed and new tools are provided for the stability analysis. The book opens by deriving the PDE’s based on the physical models and by introducing the basic framework for the linear stationary problem. The linear analysis, in particular the behavior of the eigenvalues as the position of the piers varies, enables the authors to tackle the stability issue for some nonlinear evolution beam equations, with the aim of determining the “best position” of the piers within the beam in order to maximize its stability. The study continues with the analysis of a class of degenerate plate models. The torsional instability of the structure is investigated, and again, the optimal position of the piers in terms of stability is discussed. The stability analysis is carried out by means of both analytical tools and numerical experiments. Several open problems and possible future developments are presented. The qualitative analysis provided in the book should be seen as the starting point for a precise quantitative study of more complete models, taking into account the action of aerodynamic forces. This book is intended for a two-fold audience. It is addressed both to mathematicians working in the field of Differential Equations, Nonlinear Analysis and Mathematical Physics, due to the rich number of challenging mathematical questions which are discussed and left as open problems, and to Engineers interested in mechanical structures, since it provides the theoretical basis to deal with models for the dynamics of suspension bridges with intermediate piers. More generally, it may be enjoyable for readers who are interested in the application of Mathematics to real life problems.
Hamiltonian Partial Differential Equations And Applications
DOWNLOAD
Author : Philippe Guyenne
language : en
Publisher: Springer
Release Date : 2015-09-11
Hamiltonian Partial Differential Equations And Applications written by Philippe Guyenne and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-11 with Mathematics categories.
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
Lectures On Quantum Mechanics And Attractors
DOWNLOAD
Author : Alexander Komech
language : en
Publisher: World Scientific
Release Date : 2022-02-18
Lectures On Quantum Mechanics And Attractors written by Alexander Komech and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-18 with Science categories.
This book gives a concise introduction to Quantum Mechanics with a systematic, coherent, and in-depth explanation of related mathematical methods from the scattering theory and the theory of Partial Differential Equations.The book is aimed at graduate and advanced undergraduate students in mathematics, physics, and chemistry, as well as at the readers specializing in quantum mechanics, theoretical physics and quantum chemistry, and applications to solid state physics, optics, superconductivity, and quantum and high-frequency electronic devices.The book utilizes elementary mathematical derivations. The presentation assumes only basic knowledge of the origin of Hamiltonian mechanics, Maxwell equations, calculus, Ordinary Differential Equations and basic PDEs. Key topics include the Schrödinger, Pauli, and Dirac equations, the corresponding conservation laws, spin, the hydrogen spectrum, and the Zeeman effect, scattering of light and particles, photoelectric effect, electron diffraction, and relations of quantum postulates with attractors of nonlinear Hamiltonian PDEs. Featuring problem sets and accompanied by extensive contemporary and historical references, this book could be used for the course on Quantum Mechanics and is also suitable for individual study.
Variational Methods
DOWNLOAD
Author : Maïtine Bergounioux
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2017-01-11
Variational Methods written by Maïtine Bergounioux and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-11 with Mathematics categories.
With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler・Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein・Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index
Analysis Of Hamiltonian Pdes
DOWNLOAD
Author : Sergej B. Kuksin
language : en
Publisher: Clarendon Press
Release Date : 2000
Analysis Of Hamiltonian Pdes written by Sergej B. Kuksin and has been published by Clarendon Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
For the last 20-30 years, interest among mathematicians and physicists in infinite-dimensional Hamiltonian systems and Hamiltonian partial differential equations has been growing strongly, and many papers and a number of books have been written on integrable Hamiltonian PDEs. During the last decade though, the interest has shifted steadily towards non-integrable Hamiltonian PDEs. Here, not algebra but analysis and symplectic geometry are the appropriate analysing tools. The present book is the first one to use this approach to Hamiltonian PDEs and present a complete proof of the "KAM for PDEs" theorem. It will be an invaluable source of information for postgraduate mathematics and physics students and researchers.
Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields
DOWNLOAD
Author : John Guckenheimer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21
Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields written by John Guckenheimer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Mathematics categories.
From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning `strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2
Advanced Topics In Nonsmooth Dynamics
DOWNLOAD
Author : Remco Leine
language : en
Publisher: Springer
Release Date : 2018-06-07
Advanced Topics In Nonsmooth Dynamics written by Remco Leine and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-07 with Technology & Engineering categories.
This book discusses emerging topics in the area of nonsmooth dynamics research, such as numerical methods for nonsmooth systems, impact laws for multi-collisions, nonlinear vibrations and control of nonsmooth systems. It documents original work of researchers at the European Network for NonSmooth Dynamics (ENNSD), which provides a cooperation platform for researchers in the field and promotes research focused on nonsmooth dynamics and its applications. Since the establishment of the network in 2012, six ENNSD symposia have been organized at different European locations. The network brings together 40 specialists from 9 different countries in and outside Europe and a wealth of scientific knowledge has been gathered and developed by this group of experts in recent years. The book is of interest to both new and experienced researchers in the field of nonsmooth dynamics. Each chapter is written in such a way as to provide an introduction to the topic for researchers from other fields.