[PDF] Nonlinear Stability And Bifurcation Theory - eBooks Review

Nonlinear Stability And Bifurcation Theory


Nonlinear Stability And Bifurcation Theory
DOWNLOAD

Download Nonlinear Stability And Bifurcation Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Stability And Bifurcation Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Nonlinear Stability And Bifurcation Theory


Nonlinear Stability And Bifurcation Theory
DOWNLOAD
Author : Hans Troger
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Nonlinear Stability And Bifurcation Theory written by Hans Troger and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the search for Ljapunov functions for nonlinear stability problems in the seventies. However things have changed. At the beginning of the seventies, start ing with the work of V.1. Arnold, R. Thom and many others, new ideas which, however, have their origin in the work of H. Poincare and A. A. Andronov, in the treatment of nonlinear problems appeared. These ideas gave birth to the term Bifurcation Theory. Bifurcation theory allows to solve a great class of nonlinear problems under variation of parameters in a straightforward manner.



Elementary Stability And Bifurcation Theory


Elementary Stability And Bifurcation Theory
DOWNLOAD
Author : Gerard Iooss
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Elementary Stability And Bifurcation Theory written by Gerard Iooss and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In its most general form bifurcation theory is a theory of asymptotic solutions of nonlinear equations. By asymptotic solutions we mean, for example, steady solutions, time-periodic solutions, and quasi-periodic solutions. The purpose of this book is to teach the theory of bifurcation of asymptotic solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broadest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, economists, and others whose work involves understanding asymptotic solutions of nonlinear differential equations. To accomplish our aims, we have thought it necessary to make the analysis: (1) general enough to apply to the huge variety of applications which arise in science and technology; and (2) simple enough so that it can be understood by persons whose mathe matical training does not extend beyond the classical methods of analysis which were popular in the nineteenth century. Of course, it is not possible to achieve generality and simplicity in a perfect union but, in fact, the general theory is simpler than the detailed theory required for particular applications. The general theory abstracts from the detailed problems only the essential features and provides the student with the skeleton on which detailed structures of the applications must rest. lt is generally believed that the mathematical theory of bifurcation requires some functional analysis and some ofthe methods of topology and dynamics.



Bifurcation And Stability In Nonlinear Dynamical Systems


Bifurcation And Stability In Nonlinear Dynamical Systems
DOWNLOAD
Author : Albert C. J. Luo
language : en
Publisher: Springer Nature
Release Date : 2020-01-30

Bifurcation And Stability In Nonlinear Dynamical Systems written by Albert C. J. Luo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-30 with Mathematics categories.


This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums; Discusses dynamics of infinite-equilibrium systems; Demonstrates higher-order singularity.



Elements Of Applied Bifurcation Theory


Elements Of Applied Bifurcation Theory
DOWNLOAD
Author : Yuri Kuznetsov
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-06-29

Elements Of Applied Bifurcation Theory written by Yuri Kuznetsov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-29 with Mathematics categories.


Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.



Bifurcation Theory Of Functional Differential Equations


Bifurcation Theory Of Functional Differential Equations
DOWNLOAD
Author : Shangjiang Guo
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-30

Bifurcation Theory Of Functional Differential Equations written by Shangjiang Guo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-30 with Mathematics categories.


This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).



Bifurcation Theory And Applications


Bifurcation Theory And Applications
DOWNLOAD
Author : Shouhong Wang
language : en
Publisher: World Scientific
Release Date : 2005-06-27

Bifurcation Theory And Applications written by Shouhong Wang and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-06-27 with Science categories.


This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.



Continuation And Bifurcations Numerical Techniques And Applications


Continuation And Bifurcations Numerical Techniques And Applications
DOWNLOAD
Author : Dirk Roose
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Continuation And Bifurcations Numerical Techniques And Applications written by Dirk Roose and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Proceedings of the NATO Advanced Research Workshop, Leuven, Belgium, September 18-22, 1989



Bifurcations And Catastrophes


Bifurcations And Catastrophes
DOWNLOAD
Author : Michel Demazure
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-12-15

Bifurcations And Catastrophes written by Michel Demazure and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-12-15 with Mathematics categories.


Based on a lecture course, this text gives a rigorous introduction to nonlinear analysis, dynamical systems and bifurcation theory including catastrophe theory. Wherever appropriate it emphasizes a geometrical or coordinate-free approach allowing a clear focus on the essential mathematical structures. It brings out features common to different branches of the subject while giving ample references for more advanced or technical developments.



Methods Of Bifurcation Theory


Methods Of Bifurcation Theory
DOWNLOAD
Author : S.-N. Chow
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Methods Of Bifurcation Theory written by S.-N. Chow and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable.



New Methods For Chaotic Dynamics


New Methods For Chaotic Dynamics
DOWNLOAD
Author : Nikolai Aleksandrovich Magnitskii
language : en
Publisher: World Scientific
Release Date : 2006

New Methods For Chaotic Dynamics written by Nikolai Aleksandrovich Magnitskii and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


This book presents a new theory on the transition to dynamical chaos for two-dimensional nonautonomous, and three-dimensional, many-dimensional and infinitely-dimensional autonomous nonlinear dissipative systems of differential equations including nonlinear partial differential equations and differential equations with delay arguments. The transition is described from the Feigenbaum cascade of period doubling bifurcations of the original singular cycle to the complete or incomplete Sharkovskii subharmonic cascade of bifurcations of stable limit cycles with arbitrary period and finally to the complete or incomplete homoclinic cascade of bifurcations. The book presents a distinct view point on the principles of formation, scenarios of occurrence and ways of control of chaotic motion in nonlinear dissipative dynamical systems. All theoretical results and conclusions of the theory are strictly proved and confirmed by numerous examples, illustrations and numerical calculations. Sample Chapter(s). Chapter 1: Systems of Ordinary Differential Equations (1,736 KB). Contents: Systems of Ordinary Differential Equations; Bifurcations in Nonlinear Systems of Ordinary Differential Equations; Chaotic Systems of Ordinary Differential Equations; Principles of the Theory of Dynamical Chaos in Dissipative Systems of Ordinary Differential Equations; Dynamical Chaos in Infinitely-Dimensional Systems of Differential Equations; Chaos Control in Systems of Differential Equations. Readership: Graduate students and researchers in complex and chaotic dynamical systems.