Nonparametric Bayesian Inference In Biostatistics

DOWNLOAD
Download Nonparametric Bayesian Inference In Biostatistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonparametric Bayesian Inference In Biostatistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Nonparametric Bayesian Inference In Biostatistics
DOWNLOAD
Author : Riten Mitra
language : en
Publisher: Springer
Release Date : 2015-07-25
Nonparametric Bayesian Inference In Biostatistics written by Riten Mitra and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-25 with Medical categories.
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.
Bayesian Nonparametric Data Analysis
DOWNLOAD
Author : Peter Müller
language : en
Publisher: Springer
Release Date : 2015-06-17
Bayesian Nonparametric Data Analysis written by Peter Müller and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-17 with Mathematics categories.
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.
Fundamentals Of Nonparametric Bayesian Inference
DOWNLOAD
Author : Subhashis Ghosal
language : en
Publisher: Cambridge University Press
Release Date : 2017-06-26
Fundamentals Of Nonparametric Bayesian Inference written by Subhashis Ghosal and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-26 with Business & Economics categories.
Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.
Nonparametric Bayesian Inference
DOWNLOAD
Author : Jean-Pierre Florens
language : en
Publisher: Springer Nature
Release Date : 2024-10-21
Nonparametric Bayesian Inference written by Jean-Pierre Florens and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-21 with Mathematics categories.
This book is a compilation of unpublished papers written by Jean-Marie Rolin (with several co-authors) on nonparametric bayesian estimation. Jean-Marie was professor of statistics at University of Louvain and died on November 5th, 2018. He made important contributions in mathematical statistics with applications to different fields like econometrics or biometrics.These papers cover a variety of topics, including: • The Mathematical structure of the Bayesian model and the main concepts (sufficiency, ancillarity, invariance...) • Representation of the Dirichlet processes and of the associated Polya urn model and applications to nonparametric bayesian analysis. • Contributions to duration models and to their non parametric bayesian treatment.
Bayesian Thinking In Biostatistics
DOWNLOAD
Author : Gary L Rosner
language : en
Publisher: CRC Press
Release Date : 2021-03-16
Bayesian Thinking In Biostatistics written by Gary L Rosner and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-16 with Mathematics categories.
Praise for Bayesian Thinking in Biostatistics: "This thoroughly modern Bayesian book ...is a 'must have' as a textbook or a reference volume. Rosner, Laud and Johnson make the case for Bayesian approaches by melding clear exposition on methodology with serious attention to a broad array of illuminating applications. These are activated by excellent coverage of computing methods and provision of code. Their content on model assessment, robustness, data-analytic approaches and predictive assessments...are essential to valid practice. The numerous exercises and professional advice make the book ideal as a text for an intermediate-level course..." -Thomas Louis, Johns Hopkins University "The book introduces all the important topics that one would usually cover in a beginning graduate level class on Bayesian biostatistics. The careful introduction of the Bayesian viewpoint and the mechanics of implementing Bayesian inference in the early chapters makes it a complete self- contained introduction to Bayesian inference for biomedical problems....Another great feature for using this book as a textbook is the inclusion of extensive problem sets, going well beyond construed and simple problems. Many exercises consider real data and studies, providing very useful examples in addition to serving as problems." - Peter Mueller, University of Texas With a focus on incorporating sensible prior distributions and discussions on many recent developments in Bayesian methodologies, Bayesian Thinking in Biostatistics considers statistical issues in biomedical research. The book emphasizes greater collaboration between biostatisticians and biomedical researchers. The text includes an overview of Bayesian statistics, a discussion of many of the methods biostatisticians frequently use, such as rates and proportions, regression models, clinical trial design, and methods for evaluating diagnostic tests. Key Features Applies a Bayesian perspective to applications in biomedical science Highlights advances in clinical trial design Goes beyond standard statistical models in the book by introducing Bayesian nonparametric methods and illustrating their uses in data analysis Emphasizes estimation of biomedically relevant quantities and assessment of the uncertainty in this estimation Provides programs in the BUGS language, with variants for JAGS and Stan, that one can use or adapt for one's own research The intended audience includes graduate students in biostatistics, epidemiology, and biomedical researchers, in general Authors Gary L. Rosner is the Eli Kennerly Marshall, Jr., Professor of Oncology at the Johns Hopkins School of Medicine and Professor of Biostatistics at the Johns Hopkins Bloomberg School of Public Health. Purushottam (Prakash) W. Laud is Professor in the Division of Biostatistics, and Director of the Biostatistics Shared Resource for the Cancer Center, at the Medical College of Wisconsin. Wesley O. Johnson is professor Emeritus in the Department of Statistics as the University of California, Irvine.
Bayesian Nonparametrics
DOWNLOAD
Author : J.K. Ghosh
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-11
Bayesian Nonparametrics written by J.K. Ghosh and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-11 with Mathematics categories.
This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.
Bayesian Biostatistics
DOWNLOAD
Author : Emmanuel Lesaffre
language : en
Publisher: John Wiley & Sons
Release Date : 2012-06-18
Bayesian Biostatistics written by Emmanuel Lesaffre and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-18 with Medical categories.
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials. Key Features: Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques. Contains introductory explanations of Bayesian principles common to all areas of application. Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics. Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs. Highlights the differences between the Bayesian and classical approaches. Supported by an accompanying website hosting free software and case study guides. Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have interest in Bayesian methods will find this book useful.
All Of Nonparametric Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-10
All Of Nonparametric Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-10 with Mathematics categories.
There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master’s-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master’s-level students. For Ph. D.
Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01
Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Bayesian Survival Analysis
DOWNLOAD
Author : Joseph G. Ibrahim
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Bayesian Survival Analysis written by Joseph G. Ibrahim and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Medical categories.
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for mulitivariate survival data, and special types of hierarchial survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.