[PDF] Nonparametric Regression Methods For Longitudinal Data Analysis - eBooks Review

Nonparametric Regression Methods For Longitudinal Data Analysis


Nonparametric Regression Methods For Longitudinal Data Analysis
DOWNLOAD

Download Nonparametric Regression Methods For Longitudinal Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonparametric Regression Methods For Longitudinal Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Nonparametric Regression Methods For Longitudinal Data Analysis


Nonparametric Regression Methods For Longitudinal Data Analysis
DOWNLOAD
Author : Hulin Wu
language : en
Publisher: John Wiley & Sons
Release Date : 2006-05-12

Nonparametric Regression Methods For Longitudinal Data Analysis written by Hulin Wu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-12 with Mathematics categories.


Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.



Nonparametric Regression Analysis Of Longitudinal Data


Nonparametric Regression Analysis Of Longitudinal Data
DOWNLOAD
Author : Hans-Georg Müller
language : en
Publisher: Springer
Release Date : 1988-01-01

Nonparametric Regression Analysis Of Longitudinal Data written by Hans-Georg Müller and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-01-01 with Longitudinal method categories.




Nonparametric Regression Analysis Of Longitudinal Data


Nonparametric Regression Analysis Of Longitudinal Data
DOWNLOAD
Author : Hans-Georg Muller
language : en
Publisher:
Release Date : 2014-01-15

Nonparametric Regression Analysis Of Longitudinal Data written by Hans-Georg Muller and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-15 with categories.




Methods And Applications Of Longitudinal Data Analysis


Methods And Applications Of Longitudinal Data Analysis
DOWNLOAD
Author : Xian Liu
language : en
Publisher: Elsevier
Release Date : 2015-09-01

Methods And Applications Of Longitudinal Data Analysis written by Xian Liu and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-01 with Mathematics categories.


Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.



Longitudinal Data Analysis


Longitudinal Data Analysis
DOWNLOAD
Author : Garrett Fitzmaurice
language : en
Publisher: CRC Press
Release Date : 2008-08-11

Longitudinal Data Analysis written by Garrett Fitzmaurice and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-11 with Mathematics categories.


Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory



Nonparametric Models For Longitudinal Data


Nonparametric Models For Longitudinal Data
DOWNLOAD
Author : Colin O. Wu
language : en
Publisher: CRC Press
Release Date : 2018-05-23

Nonparametric Models For Longitudinal Data written by Colin O. Wu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-23 with Mathematics categories.


Nonparametric Models for Longitudinal Data with Implementations in R presents a comprehensive summary of major advances in nonparametric models and smoothing methods with longitudinal data. It covers methods, theories, and applications that are particularly useful for biomedical studies in the era of big data and precision medicine. It also provides flexible tools to describe the temporal trends, covariate effects and correlation structures of repeated measurements in longitudinal data. This book is intended for graduate students in statistics, data scientists and statisticians in biomedical sciences and public health. As experts in this area, the authors present extensive materials that are balanced between theoretical and practical topics. The statistical applications in real-life examples lead into meaningful interpretations and inferences. Features: • Provides an overview of parametric and semiparametric methods • Shows smoothing methods for unstructured nonparametric models • Covers structured nonparametric models with time-varying coefficients • Discusses nonparametric shared-parameter and mixed-effects models • Presents nonparametric models for conditional distributions and functionals • Illustrates implementations using R software packages • Includes datasets and code in the authors’ website • Contains asymptotic results and theoretical derivations



Nonparametric And Semiparametric Models


Nonparametric And Semiparametric Models
DOWNLOAD
Author : Wolfgang Karl Härdle
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-27

Nonparametric And Semiparametric Models written by Wolfgang Karl Härdle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-27 with Mathematics categories.


The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.



Geostatistics


Geostatistics
DOWNLOAD
Author : Jean-Paul Chilès
language : en
Publisher: John Wiley & Sons
Release Date : 2012-02-08

Geostatistics written by Jean-Paul Chilès and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-08 with Mathematics categories.


Praise for the First Edition ". . . a readable, comprehensive volume that . . . belongs on the desk, close at hand, of any serious researcher or practitioner." Mathematical Geosciences The state of the art in geostatistics Geostatistical models and techniques such as kriging and stochastic multi-realizations exploit spatial correlations to evaluate natural resources, help optimize their development, and address environmental issues related to air and water quality, soil pollution, and forestry. Geostatistics: Modeling Spatial Uncertainty, Second Edition presents a comprehensive, up-to-date reference on the topic, now featuring the latest developments in the field. The authors explain both the theory and applications of geostatistics through a unified treatment that emphasizes methodology. Key topics that are the foundation of geostatistics are explored in-depth, including stationary and nonstationary models; linear and nonlinear methods; change of support; multivariate approaches; and conditional simulations. The Second Edition highlights the growing number of applications of geostatistical methods and discusses three key areas of growth in the field: New results and methods, including kriging very large datasets; kriging with outliers; nonse??parable space-time covariances; multipoint simulations; pluri-gaussian simulations; gradual deformation; and extreme value geostatistics Newly formed connections between geostatistics and other approaches such as radial basis functions, Gaussian Markov random fields, and data assimilation New perspectives on topics such as collocated cokriging, kriging with an external drift, discrete Gaussian change-of-support models, and simulation algorithms Geostatistics, Second Edition is an excellent book for courses on the topic at the graduate level. It also serves as an invaluable reference for earth scientists, mining and petroleum engineers, geophysicists, and environmental statisticians who collect and analyze data in their everyday work.



Causality


Causality
DOWNLOAD
Author : Carlo Berzuini
language : en
Publisher: John Wiley & Sons
Release Date : 2012-06-04

Causality written by Carlo Berzuini and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-04 with Mathematics categories.


A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.



Optimal Learning


Optimal Learning
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2013-07-09

Optimal Learning written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-09 with Mathematics categories.


Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduction to learning and a variety of policies for learning.