Nonpositive Curvature Geometric And Analytic Aspects

DOWNLOAD
Download Nonpositive Curvature Geometric And Analytic Aspects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonpositive Curvature Geometric And Analytic Aspects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Nonpositive Curvature Geometric And Analytic Aspects
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-05-01
Nonpositive Curvature Geometric And Analytic Aspects written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-05-01 with Mathematics categories.
The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.
Nonpositive Curvature Geometric And Analytic Aspects
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Nonpositive Curvature Geometric And Analytic Aspects written by Jürgen Jost and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.
Riemannian Geometry And Geometric Analysis
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-07-28
Riemannian Geometry And Geometric Analysis written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-07-28 with Mathematics categories.
This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH
Geometric Analysis And Nonlinear Partial Differential Equations
DOWNLOAD
Author : Stefan Hildebrandt
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Analysis And Nonlinear Partial Differential Equations written by Stefan Hildebrandt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.
Groups And Geometries
DOWNLOAD
Author : Lino Di Martino
language : en
Publisher: Birkhäuser
Release Date : 2013-12-01
Groups And Geometries written by Lino Di Martino and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of finite characteristic, 3. buildings, and the geometry of projective and polar spaces, and 4. geometries of sporadic simple groups. We are grateful to the authors for their efforts in providing us with manuscripts in LaTeX. Barbara Priwitzer and Thomas Hintermann, Mathematics Editors of Birkhauser, have been very helpful and supportive throughout the preparation of this volume.
Partial Differential Equations
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-04-30
Partial Differential Equations written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-30 with Mathematics categories.
This book offers an ideal introduction to the theory of partial differential equations. It focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. It also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. It also explores connections between elliptic, parabolic, and hyperbolic equations as well as the connection with Brownian motion and semigroups. This second edition features a new chapter on reaction-diffusion equations and systems.
Processing Analyzing And Learning Of Images Shapes And Forms Part 2
DOWNLOAD
Author :
language : en
Publisher: North Holland
Release Date : 2019-10-15
Processing Analyzing And Learning Of Images Shapes And Forms Part 2 written by and has been published by North Holland this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-15 with Mathematics categories.
Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more.
Gradient Flows
DOWNLOAD
Author : Luigi Ambrosio
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-01-28
Gradient Flows written by Luigi Ambrosio and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-28 with Mathematics categories.
This book is devoted to a theory of gradient ?ows in spaces which are not nec- sarily endowed with a natural linear or di?erentiable structure. It is made of two parts, the ?rst one concerning gradient ?ows in metric spaces and the second one 2 1 devoted to gradient ?ows in the L -Wasserstein space of probability measures on p a separable Hilbert space X (we consider the L -Wasserstein distance, p? (1,?), as well). The two parts have some connections, due to the fact that the Wasserstein space of probability measures provides an important model to which the “metric” theory applies, but the book is conceived in such a way that the two parts can be read independently, the ?rst one by the reader more interested to Non-Smooth Analysis and Analysis in Metric Spaces, and the second one by the reader more oriented to theapplications in Partial Di?erential Equations, Measure Theory and Probability.
Optimal Transportation
DOWNLOAD
Author : Yann Ollivier
language : en
Publisher: Cambridge University Press
Release Date : 2014-08-07
Optimal Transportation written by Yann Ollivier and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-07 with Mathematics categories.
Lecture notes and research papers on optimal transportation, its applications, and interactions with other areas of mathematics.
Numerical Methods For Conservation Laws
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: Springer Science & Business Media
Release Date : 1992-02-13
Numerical Methods For Conservation Laws written by Randall J. LeVeque and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992-02-13 with Mathematics categories.
These notes were developed for a graduate-level course on the theory and numerical solution of nonlinear hyperbolic systems of conservation laws. Part I deals with the basic mathematical theory of the equations: the notion of weak solutions, entropy conditions, and a detailed description of the wave structure of solutions to the Riemann problem. The emphasis is on tools and techniques that are indispensable in developing good numerical methods for discontinuous solutions. Part II is devoted to the development of high resolution shock-capturing methods, including the theory of total variation diminishing (TVD) methods and the use of limiter functions. The book is intended for a wide audience, and will be of use both to numerical analysts and to computational researchers in a variety of applications.