Notes On The Binomial Transform Theory And Table With Appendix On Stirling Transform

DOWNLOAD
Download Notes On The Binomial Transform Theory And Table With Appendix On Stirling Transform PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Notes On The Binomial Transform Theory And Table With Appendix On Stirling Transform book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Notes On The Binomial Transform Theory And Table With Appendix On Stirling Transform
DOWNLOAD
Author : Khristo N Boyadzhiev
language : en
Publisher: World Scientific
Release Date : 2018-04-10
Notes On The Binomial Transform Theory And Table With Appendix On Stirling Transform written by Khristo N Boyadzhiev and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-10 with Mathematics categories.
The binomial transform is a discrete transformation of one sequence into another with many interesting applications in combinatorics and analysis. This volume is helpful to researchers interested in enumerative combinatorics, special numbers, and classical analysis. A valuable reference, it can also be used as lecture notes for a course in binomial identities, binomial transforms and Euler series transformations. The binomial transform leads to various combinatorial and analytical identities involving binomial coefficients. In particular, we present here new binomial identities for Bernoulli, Fibonacci, and harmonic numbers. Many interesting identities can be written as binomial transforms and vice versa.The volume consists of two parts. In the first part, we present the theory of the binomial transform for sequences with a sufficient prerequisite of classical numbers and polynomials. The first part provides theorems and tools which help to compute binomial transforms of different sequences and also to generate new binomial identities from the old. These theoretical tools (formulas and theorems) can also be used for summation of series and various numerical computations.In the second part, we have compiled a list of binomial transform formulas for easy reference. In the Appendix, we present the definition of the Stirling sequence transform and a short table of transformation formulas.
Analytic Combinatorics
DOWNLOAD
Author : Philippe Flajolet
language : en
Publisher: Cambridge University Press
Release Date : 2009-01-15
Analytic Combinatorics written by Philippe Flajolet and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-15 with Mathematics categories.
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Numerical Methods For Laplace Transform Inversion
DOWNLOAD
Author : Alan M. Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-16
Numerical Methods For Laplace Transform Inversion written by Alan M. Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-16 with Mathematics categories.
This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations.
Asymptotics And Borel Summability
DOWNLOAD
Author : Ovidiu Costin
language : en
Publisher: CRC Press
Release Date : 2008-12-04
Asymptotics And Borel Summability written by Ovidiu Costin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-04 with Mathematics categories.
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr
Algebraic Combinatorics
DOWNLOAD
Author : Richard P. Stanley
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-17
Algebraic Combinatorics written by Richard P. Stanley and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-17 with Mathematics categories.
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.
Probability
DOWNLOAD
Author : Rick Durrett
language : en
Publisher: Cambridge University Press
Release Date : 2010-08-30
Probability written by Rick Durrett and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-30 with Mathematics categories.
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Complex Analysis
DOWNLOAD
Author : Elias M. Stein
language : en
Publisher: Princeton University Press
Release Date : 2010-04-22
Complex Analysis written by Elias M. Stein and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-22 with Mathematics categories.
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Generatingfunctionology
DOWNLOAD
Author : Herbert S. Wilf
language : en
Publisher: CRC Press
Release Date : 2005-12-20
Generatingfunctionology written by Herbert S. Wilf and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-20 with Computers categories.
Generating functions, one of the most important tools in enumerative combinatorics, are a bridge between discrete mathematics and continuous analysis. Generating functions have numerous applications in mathematics, especially in - Combinatorics - Probability Theory - Statistics - Theory of Markov Chains - Number Theory One of the most important and relevant recent applications of combinatorics lies in the development of Internet search engines whose incredible capabilities dazzle even the mathematically trained user.
Combinatorial Identities For Stirling Numbers The Unpublished Notes Of H W Gould
DOWNLOAD
Author : Jocelyn Quaintance
language : en
Publisher: World Scientific
Release Date : 2015-10-27
Combinatorial Identities For Stirling Numbers The Unpublished Notes Of H W Gould written by Jocelyn Quaintance and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-27 with Mathematics categories.
This book is a unique work which provides an in-depth exploration into the mathematical expertise, philosophy, and knowledge of H W Gould. It is written in a style that is accessible to the reader with basic mathematical knowledge, and yet contains material that will be of interest to the specialist in enumerative combinatorics. This book begins with exposition on the combinatorial and algebraic techniques that Professor Gould uses for proving binomial identities. These techniques are then applied to develop formulas which relate Stirling numbers of the second kind to Stirling numbers of the first kind. Professor Gould's techniques also provide connections between both types of Stirling numbers and Bernoulli numbers. Professor Gould believes his research success comes from his intuition on how to discover combinatorial identities.This book will appeal to a wide audience and may be used either as lecture notes for a beginning graduate level combinatorics class, or as a research supplement for the specialist in enumerative combinatorics.
Modular Forms A Computational Approach
DOWNLOAD
Author : William A. Stein
language : en
Publisher: American Mathematical Soc.
Release Date : 2007-02-13
Modular Forms A Computational Approach written by William A. Stein and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-02-13 with Mathematics categories.
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.