[PDF] Number Theory And Modular Forms - eBooks Review

Number Theory And Modular Forms


Number Theory And Modular Forms
DOWNLOAD

Download Number Theory And Modular Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Number Theory And Modular Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Problems In The Theory Of Modular Forms


Problems In The Theory Of Modular Forms
DOWNLOAD
Author : M. Ram Murty
language : en
Publisher: Springer
Release Date : 2016-11-25

Problems In The Theory Of Modular Forms written by M. Ram Murty and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Mathematics categories.


This book introduces the reader to the fascinating world of modular forms through a problem-solving approach. As such, besides researchers, the book can be used by the undergraduate and graduate students for self-instruction. The topics covered include q-series, the modular group, the upper half-plane, modular forms of level one and higher level, the Ramanujan τ-function, the Petersson inner product, Hecke operators, Dirichlet series attached to modular forms and further special topics. It can be viewed as a gentle introduction for a deeper study of the subject. Thus, it is ideal for non-experts seeking an entry into the field.



Modular Functions And Dirichlet Series In Number Theory


Modular Functions And Dirichlet Series In Number Theory
DOWNLOAD
Author : Tom M. Apostol
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Modular Functions And Dirichlet Series In Number Theory written by Tom M. Apostol and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This is the second volume of a 2-volume textbook* which evolved from a course (Mathematics 160) offered at the California Institute of Technology during the last 25 years. The second volume presupposes a background in number theory com parable to that provided in the first volume, together with a knowledge of the basic concepts of complex analysis. Most of the present volume is devoted to elliptic functions and modular functions with some of their number-theoretic applications. Among the major topics treated are Rademacher's convergent series for the partition function, Lehner's congruences for the Fourier coefficients of the modular functionj(r), and Hecke's theory of entire forms with multiplicative Fourier coefficients. The last chapter gives an account of Bohr's theory of equivalence of general Dirichlet series. Both volumes of this work emphasize classical aspects of a subject which in recent years has undergone a great deal of modern development. It is hoped that these volumes will help the nonspecialist become acquainted with an important and fascinating part of mathematics and, at the same time, will provide some of the background that belongs to the repertory of every specialist in the field. This volume, like the first, is dedicated to the students who have taken this course and have gone on to make notable contributions to number theory and other parts of mathematics. T.M.A. January, 1976 * The first volume is in the Springer-Verlag series Undergraduate Texts in Mathematics under the title Introduction to Analytic Number Theory.



Number Theory And Modular Forms


Number Theory And Modular Forms
DOWNLOAD
Author : Bruce C. Berndt
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

Number Theory And Modular Forms written by Bruce C. Berndt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.



Some Applications Of Modular Forms


Some Applications Of Modular Forms
DOWNLOAD
Author : Peter Sarnak
language : en
Publisher: Cambridge University Press
Release Date : 1990-11-15

Some Applications Of Modular Forms written by Peter Sarnak and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990-11-15 with Mathematics categories.


The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.



Introduction To The Arithmetic Theory Of Automorphic Functions


Introduction To The Arithmetic Theory Of Automorphic Functions
DOWNLOAD
Author : Gorō Shimura
language : en
Publisher: Princeton University Press
Release Date : 1971-08-21

Introduction To The Arithmetic Theory Of Automorphic Functions written by Gorō Shimura and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971-08-21 with Mathematics categories.


The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.



Modular Functions In Analytic Number Theory


Modular Functions In Analytic Number Theory
DOWNLOAD
Author : Marvin Isadore Knopp
language : en
Publisher: American Mathematical Soc.
Release Date : 2008

Modular Functions In Analytic Number Theory written by Marvin Isadore Knopp and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.


Knopp's engaging book presents an introduction to modular functions in number theory by concentrating on two modular functions, $\eta(\tau)$ and $\vartheta(\tau)$, and their applications to two number-theoretic functions, $p(n)$ and $r_s(n)$. They are well chosen, as at the heart of these particular applications to the treatment of these specific number-theoretic functions lies the general theory of automorphic functions, a theory of far-reaching significance with important connections to a great many fields of mathematics. The book is essentially self-contained, assuming only a good first-year course in analysis. The excellent exposition presents the beautiful interplay between modular forms and number theory, making the book an excellent introduction to analytic number theory for a beginning graduate student. Table of Contents: The Modular Group and Certain Subgroups: 1. The modular group; 2. A fundamental region for $\Gamma(1)$; 3. Some subgroups of $\Gamma(1)$; 4. Fundamental regions of subgroups. Modular Functions and Forms: 1. Multiplier systems; 2. Parabolic points; 3 Fourier expansions; 4. Definitions of modular function and modular form; 5. Several important theorems. The Modular Forms $\eta(\tau)$ and $\vartheta(\tau)$: 1. The function $\eta(\tau)$; 2. Several famous identities; 3. Transformation formulas for $\eta(\tau)$; 4. The function $\vartheta(\tau)$. The Multiplier Systems $upsilon_{\eta}$ and $upsilon_{\vartheta}$: 1. Preliminaries; 2. Proof of theorem 2; 3. Proof of theorem 3. Sums of Squares: 1. Statement of results; 2. Lipschitz summation formula; 3. The function $\psi_s(\tau)$; 4. The expansion of $\psi_s(\tau)$ at $-1$; 5. Proofs of theorems 2 and 3; 6. Related results. The Order of Magnitude of $p(n)$: 1. A simple inequality for $p(n)$; 2. The asymptotic formula for $p(n)$; 3. Proof of theorem 2. The Ramanujan Congruences for $p(n)$: 1. Statement of the congruences; 2. The functions $\Phi_{p,r}(\tau)$ and $h_p(\tau)$; 3. The function $s_{p, r}(\tau)$; 4. The congruence for $p(n)$ Modulo 11; 5. Newton's formula; 6. The modular equation for the prime 5; 7. The modular equation for the prime 7. Proof of the Ramanujan Congruences for Powers of 5 and 7: 1. Preliminaries; 2. Application of the modular equation; 3. A digression: The Ramanujan identities for powers of the prime 5; 4. Completion of the proof for powers of 5; 5. Start of the proof for powers of 7; 6. A second digression: The Ramanujan identities for powers of the prime 7; 7. Completion of the proof for powers of 7. Index. (CHEL/337.H)



Modular Forms And Related Topics In Number Theory


Modular Forms And Related Topics In Number Theory
DOWNLOAD
Author : B. Ramakrishnan
language : en
Publisher: Springer Nature
Release Date : 2020-11-24

Modular Forms And Related Topics In Number Theory written by B. Ramakrishnan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-24 with Mathematics categories.


This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.



Number Theory


Number Theory
DOWNLOAD
Author : Kazuya Kato
language : en
Publisher: American Mathematical Soc.
Release Date : 2000

Number Theory written by Kazuya Kato and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Class field theory categories.




Modular Forms And Fermat S Last Theorem


Modular Forms And Fermat S Last Theorem
DOWNLOAD
Author : Gary Cornell
language : en
Publisher: Springer Science & Business Media
Release Date : 1997

Modular Forms And Fermat S Last Theorem written by Gary Cornell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.


A collection of expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held at Boston University. The purpose of the conference, and indeed this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof, and to explain how his result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications.



Modular Forms And Fermat S Last Theorem


Modular Forms And Fermat S Last Theorem
DOWNLOAD
Author : Gary Cornell
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01

Modular Forms And Fermat S Last Theorem written by Gary Cornell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.


This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. Contributor's includeThe purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi-stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable resource for mastering the epoch-making proof of Fermat's Last Theorem.