Number Theory For Computing

DOWNLOAD
Download Number Theory For Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Number Theory For Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Number Theory For Computing
DOWNLOAD
Author : Song Y. Yan
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Number Theory For Computing written by Song Y. Yan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Computers categories.
Modern cryptography depends heavily on number theory, with primality test ing, factoring, discrete logarithms (indices), and elliptic curves being perhaps the most prominent subject areas. Since my own graduate study had empha sized probability theory, statistics, and real analysis, when I started work ing in cryptography around 1970, I found myself swimming in an unknown, murky sea. I thus know from personal experience how inaccessible number theory can be to the uninitiated. Thank you for your efforts to case the transition for a new generation of cryptographers. Thank you also for helping Ralph Merkle receive the credit he deserves. Diffie, Rivest, Shamir, Adleman and I had the good luck to get expedited review of our papers, so that they appeared before Merkle's seminal contribu tion. Your noting his early submission date and referring to what has come to be called "Diffie-Hellman key exchange" as it should, "Diffie-Hellman-Merkle key exchange", is greatly appreciated. It has been gratifying to see how cryptography and number theory have helped each other over the last twenty-five years. :'-Jumber theory has been the source of numerous clever ideas for implementing cryptographic systems and protocols while cryptography has been helpful in getting funding for this area which has sometimes been called "the queen of mathematics" because of its seeming lack of real world applications. Little did they know! Stanford, 30 July 2001 Martin E. Hellman Preface to the Second Edition Number theory is an experimental science.
A Course In Computational Algebraic Number Theory
DOWNLOAD
Author : Henri Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
A Course In Computational Algebraic Number Theory written by Henri Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
With the advent of powerful computing tools and numerous advances in math ematics, computer science and cryptography, algorithmic number theory has become an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful al gorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of appli cations, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ... Several books exist which treat parts of this subject. (It is essentially impossible for an author to keep up with the rapid pace of progress in all areas of this subject.) Each book emphasizes a different area, corresponding to the author's tastes and interests. The most famous, but unfortunately the oldest, is Knuth's Art of Computer Programming, especially Chapter 4. The present book has two goals. First, to give a reasonably comprehensive introductory course in computational number theory. In particular, although we study some subjects in great detail, others are only mentioned, but with suitable pointers to the literature. Hence, we hope that this book can serve as a first course on the subject. A natural sequel would be to study more specialized subjects in the existing literature.
Computational Number Theory
DOWNLOAD
Author : Abhijit Das
language : en
Publisher: CRC Press
Release Date : 2013-03-18
Computational Number Theory written by Abhijit Das and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-18 with Computers categories.
Developed from the author’s popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and practitioners of cryptography in industry. Requiring no prior experience with number theory or sophisticated algebraic tools, the book covers many computational aspects of number theory and highlights important and interesting engineering applications. It first builds the foundation of computational number theory by covering the arithmetic of integers and polynomials at a very basic level. It then discusses elliptic curves, primality testing, algorithms for integer factorization, computing discrete logarithms, and methods for sparse linear systems. The text also shows how number-theoretic tools are used in cryptography and cryptanalysis. A dedicated chapter on the application of number theory in public-key cryptography incorporates recent developments in pairing-based cryptography. With an emphasis on implementation issues, the book uses the freely available number-theory calculator GP/PARI to demonstrate complex arithmetic computations. The text includes numerous examples and exercises throughout and omits lengthy proofs, making the material accessible to students and practitioners.
Computational Algebra And Number Theory
DOWNLOAD
Author : Wieb Bosma
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Computational Algebra And Number Theory written by Wieb Bosma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
Computational Algebraic Number Theory
DOWNLOAD
Author : M.E. Pohst
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Computational Algebraic Number Theory written by M.E. Pohst and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker Vereinigung initiated an introductory graduate seminar on this topic in Düsseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. Contents: Introduction • Topics from finite fields • Arithmetic and polynomials • Factorization of polynomials • Topics from the geometry of numbers • Hermite normal form • Lattices • Reduction • Enumeration of lattice points • Algebraic number fields • Introduction • Basic Arithmetic • Computation of an integral basis • Integral closure • Round-Two-Method • Round-Four-Method • Computation of the unit group • Dirichlet's unit theorem and a regulator bound • Two methods for computing r independent units • Fundamental unit computation • Computation of the class group • Ideals and class number • A method for computing the class group • Appendix • The number field sieve • KANT • References • Index
Advanced Topics In Computational Number Theory
DOWNLOAD
Author : Henri Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-10-29
Advanced Topics In Computational Number Theory written by Henri Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-29 with Mathematics categories.
The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.
Number Theory In Science And Communication
DOWNLOAD
Author : M.R. Schroeder
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-01-06
Number Theory In Science And Communication written by M.R. Schroeder and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-06 with Mathematics categories.
Number Theory in Science and Communication introductes non-mathematicians to the fascinating and diverse applications of number theory. This best-selling book stresses intuitive understanding rather than abstract theory. This revised fourth edition is augmented by recent advances in primes in progressions, twin primes, prime triplets, prime quadruplets and quintruplets, factoring with elliptic curves, quantum factoring, Golomb rulers and "baroque" integers.
Algorithmic Number Theory
DOWNLOAD
Author : Eric Bach
language : en
Publisher:
Release Date : 1996-08-26
Algorithmic Number Theory written by Eric Bach and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-08-26 with categories.
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations.The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas.Publisher's Note: Volume 2 was not written. Volume 1 is, therefore, a stand-alone publication.
Computer Algebra And Polynomials
DOWNLOAD
Author : Jaime Gutierrez
language : en
Publisher: Springer
Release Date : 2015-01-20
Computer Algebra And Polynomials written by Jaime Gutierrez and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-20 with Computers categories.
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.