Numerical Analysis Of Ordinary And Delay Differential Equations

DOWNLOAD
Download Numerical Analysis Of Ordinary And Delay Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Analysis Of Ordinary And Delay Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Numerical Analysis Of Ordinary And Delay Differential Equations
DOWNLOAD
Author : Taketomo Mitsui
language : en
Publisher: Springer Nature
Release Date : 2023-05-23
Numerical Analysis Of Ordinary And Delay Differential Equations written by Taketomo Mitsui and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-23 with Mathematics categories.
This book serves as a concise textbook for students in an advanced undergraduate or first-year graduate course in various disciplines such as applied mathematics, control, and engineering, who want to understand the modern standard of numerical methods of ordinary and delay differential equations. Experts in the same fields can also learn about the recent developments in numerical analysis of such differential systems. Ordinary differential equations (ODEs) provide a strong mathematical tool to express a wide variety of phenomena in science and engineering. Along with its own significance, one of the powerful directions toward which ODEs extend is to incorporate an unknown function with delayed argument. This is called delay differential equations (DDEs), which often appear in mathematical modelling of biology, demography, epidemiology, and control theory. In some cases, the solution of a differential equation can be obtained by algebraic combinations of known mathematical functions. In many practical cases, however, such a solution is quite difficult or unavailable, and numerical approximations are called for. Modern development of computers accelerates the situation and, moreover, launches more possibilities of numerical means. Henceforth, the knowledge and expertise of the numerical solution of differential equations becomes a requirement in broad areas of science and engineering. One might think that a well-organized software package such as MATLAB serves much the same solution. In a sense, this is true; but it must be kept in mind that blind employment of software packages misleads the user. The gist of numerical solution of differential equations still must be learned. The present book is intended to provide the essence of numerical solutions of ordinary differential equations as well as of delay differential equations. Particularly, the authors noted that there are still few concise textbooks of delay differential equations, and then they set about filling the gap through descriptions as transparent as possible. Major algorithms of numerical solution are clearly described in this book. The stability of solutions of ODEs and DDEs is crucial as well. The book introduces the asymptotic stability of analytical and numerical solutions and provides a practical way to analyze their stability by employing a theory of complex functions.
Numerical Methods For Delay Differential Equations
DOWNLOAD
Author : Alfredo Bellen
language : en
Publisher: Clarendon Press
Release Date : 2003-03-20
Numerical Methods For Delay Differential Equations written by Alfredo Bellen and has been published by Clarendon Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-03-20 with Mathematics categories.
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
Numerical Continuation Methods For Dynamical Systems
DOWNLOAD
Author : Bernd Krauskopf
language : en
Publisher: Springer
Release Date : 2007-11-06
Numerical Continuation Methods For Dynamical Systems written by Bernd Krauskopf and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-06 with Science categories.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Online Optimization Of Large Scale Systems
DOWNLOAD
Author : Martin Grötschel
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Online Optimization Of Large Scale Systems written by Martin Grötschel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.
Numerical Analysis Of Ordinary Differential Equations And Its Applications
DOWNLOAD
Author : Taketomo Mitsui
language : en
Publisher: World Scientific
Release Date : 1995
Numerical Analysis Of Ordinary Differential Equations And Its Applications written by Taketomo Mitsui and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Mathematics categories.
The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.
Differential Equations And Applications
DOWNLOAD
Author : Valarmathi Sigamani
language : en
Publisher: Springer Nature
Release Date : 2022-01-24
Differential Equations And Applications written by Valarmathi Sigamani and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-24 with Mathematics categories.
This book collects select papers presented at the International Conference on Applications of Basic Sciences, held at Tiruchirappalli, Tamil Nadu, India, from 19-21 November 2019. The book discusses topics on singular perturbation problems, differential equations, numerical analysis, fuzzy logics, fuzzy differential equations, and mathematical physics, and their interdisciplinary applications in all areas of basic sciences: mathematics, physics, chemistry, and biology. It will be useful to researchers and scientists in all disciplines of basic sciences. This book will be very useful to know the different scientific approaches for a single physical system.
Ordinary Differential Equations And Integral Equations
DOWNLOAD
Author : C.T.H. Baker
language : en
Publisher: Gulf Professional Publishing
Release Date : 2001-07-04
Ordinary Differential Equations And Integral Equations written by C.T.H. Baker and has been published by Gulf Professional Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-07-04 with Juvenile Nonfiction categories.
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods. A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld. Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators. Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques. George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.
Numerical Methods For Delay Differential Equations
DOWNLOAD
Author : Alfredo Bellen
language : en
Publisher: Numerical Mathematics and Scie
Release Date : 2013-01-10
Numerical Methods For Delay Differential Equations written by Alfredo Bellen and has been published by Numerical Mathematics and Scie this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-10 with Business & Economics categories.
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
Numerical Analysis Of Ordinary Differential Equations And Its Applications
DOWNLOAD
Author : Taketomo Mitsui
language : en
Publisher: World Scientific
Release Date : 1995-10-12
Numerical Analysis Of Ordinary Differential Equations And Its Applications written by Taketomo Mitsui and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-10-12 with Mathematics categories.
The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.
Delay Differential Equations
DOWNLOAD
Author : Balakumar Balachandran
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-05
Delay Differential Equations written by Balakumar Balachandran and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-05 with Technology & Engineering categories.
Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.