Numerical Analysis Of Viscoelastic Problems

DOWNLOAD
Download Numerical Analysis Of Viscoelastic Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Analysis Of Viscoelastic Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Numerical Analysis Of Viscoelastic Problems
DOWNLOAD
Author : Patrick Le Tallec
language : en
Publisher: Elsevier Masson
Release Date : 1990
Numerical Analysis Of Viscoelastic Problems written by Patrick Le Tallec and has been published by Elsevier Masson this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Análisis numérico categories.
Numerical Analysis Of Viscoelastic Problems
DOWNLOAD
Author : Patrick Le Tallec
language : en
Publisher: Elsevier Masson
Release Date : 1990
Numerical Analysis Of Viscoelastic Problems written by Patrick Le Tallec and has been published by Elsevier Masson this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Análisis numérico categories.
Numerical Analysis And Simulations Of Some Problems With Damage In Solid Mechanics
DOWNLOAD
Author : Marco Antonio Campo Cabana
language : en
Publisher: Univ Santiago de Compostela
Release Date : 2008
Numerical Analysis And Simulations Of Some Problems With Damage In Solid Mechanics written by Marco Antonio Campo Cabana and has been published by Univ Santiago de Compostela this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with categories.
Quasistatic Contact Problems In Viscoelasticity And Viscoplasticity
DOWNLOAD
Author : Weimin Han
language : en
Publisher: American Mathematical Soc.
Release Date : 2002
Quasistatic Contact Problems In Viscoelasticity And Viscoplasticity written by Weimin Han and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
Índice: Function spaces and their properties; Introduction to finite difference and finite element approximations; Variational inequalities; Constitutive relations in solid mechanics; Background on variational and numerical analysis in contact mechanics; Contact problems in elasticity; Bilateral contact with slip dependent friction; Frictional contact with normal compliance; Frictional contact with normal damped response; Other viscoelastic contact problems; Frictionless contact with dissipative potential; Frictionless contact between two viscoplastic bodies; Bilateral contact with Tresca's friction law; Other viscoelastic contact problems; Bibliography; Index.
Analysis And Approximation Of Contact Problems With Adhesion Or Damage
DOWNLOAD
Author : Mircea Sofonea
language : en
Publisher: CRC Press
Release Date : 2005-09-26
Analysis And Approximation Of Contact Problems With Adhesion Or Damage written by Mircea Sofonea and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-09-26 with Mathematics categories.
Research into contact problems continues to produce a rapidly growing body of knowledge. Recognizing the need for a single, concise source of information on models and analysis of contact problems, accomplished experts Sofonea, Han, and Shillor carefully selected several models and thoroughly study them in Analysis and Approximation of Contact P
Models And Analysis Of Quasistatic Contact
DOWNLOAD
Author : Meir Shillor
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-16
Models And Analysis Of Quasistatic Contact written by Meir Shillor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-16 with Science categories.
The mathematical theory of contact mechanics is a growing field in engineering and scientific computing. This book is intended as a unified and readily accessible source for mathematicians, applied mathematicians, mechanicians, engineers and scientists, as well as advanced students. The first part describes models of the processes involved like friction, heat generation and thermal effects, wear, adhesion and damage. The second part presents many mathematical models of practical interest and demonstrates the close interaction and cross-fertilization between contact mechanics and the theory of variational inequalities. The last part reviews further results, gives many references to current research and discusses open problems and future developments. The book can be read by mechanical engineers interested in applications. In addition, some theorems and their proofs are given as examples for the mathematical tools used in the models.
Numerical Analysis Of Vibrations Of Structures Under Moving Inertial Load
DOWNLOAD
Author : Czesław I. Bajer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-04-27
Numerical Analysis Of Vibrations Of Structures Under Moving Inertial Load written by Czesław I. Bajer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-27 with Science categories.
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book.
Inverse And Crack Identification Problems In Engineering Mechanics
DOWNLOAD
Author : Georgios E. Stavroulakis
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21
Inverse And Crack Identification Problems In Engineering Mechanics written by Georgios E. Stavroulakis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Mathematics categories.
Inverse and crack identification problems are of paramount importance for health monitoring and quality control purposes arising in critical applications in civil, aeronautical, nuclear, and general mechanical engineering. Mathematical modeling and the numerical study of these problems require high competence in computational mechanics and applied optimization. This is the first monograph which provides the reader with all the necessary information. Delicate computational mechanics modeling, including nonsmooth unilateral contact effects, is done using boundary element techniques, which have a certain advantage for the construction of parametrized mechanical models. Both elastostatic and harmonic or transient dynamic problems are considered. The inverse problems are formulated as output error minimization problems and they are theoretically studied as a bilevel optimization problem, also known as a mathematical problem with equilibrium constraints. Beyond classical numerical optimization, soft computing tools (neural networks and genetic algorithms) and filter algorithms are used for the numerical solution. The book provides all the required material for the mathematical and numerical modeling of crack identification testing procedures in statics and dynamics and includes several thoroughly discussed applications, for example, the impact-echo nondestructive evaluation technique. Audience: The book will be of interest to structural and mechanical engineers involved in nondestructive testing and quality control projects as well as to research engineers and applied mathematicians who study and solve related inverse problems. People working on applied optimization and soft computing will find interesting problems to apply to their methods and all necessary material to continue research in this field.
Numerical Methods For Nonlinear Variational Problems
DOWNLOAD
Author : Roland Glowinski
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Numerical Methods For Nonlinear Variational Problems written by Roland Glowinski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Science categories.
Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications. "Numerical Methods for Nonlinear Variational Problems", originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
Ordinary Differential Equations And Integral Equations
DOWNLOAD
Author : C.T.H. Baker
language : en
Publisher: Gulf Professional Publishing
Release Date : 2001-07-04
Ordinary Differential Equations And Integral Equations written by C.T.H. Baker and has been published by Gulf Professional Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-07-04 with Juvenile Nonfiction categories.
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods. A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld. Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators. Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques. George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.