Numerical Bifurcation Analysis For Reaction Diffusion Equations

DOWNLOAD
Download Numerical Bifurcation Analysis For Reaction Diffusion Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Bifurcation Analysis For Reaction Diffusion Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Numerical Bifurcation Analysis For Reaction Diffusion Equations
DOWNLOAD
Author : Zhen Mei
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-06-21
Numerical Bifurcation Analysis For Reaction Diffusion Equations written by Zhen Mei and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-06-21 with Mathematics categories.
This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.
Numerical Bifurcation Analysis For Reaction Diffusion Equations
DOWNLOAD
Author : Zhen Mei
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Numerical Bifurcation Analysis For Reaction Diffusion Equations written by Zhen Mei and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce nario, mode-interactions and impact of boundary conditions.
Numerical Continuation And Bifurcation In Nonlinear Pdes
DOWNLOAD
Author : Hannes Uecker
language : en
Publisher: SIAM
Release Date : 2021-08-19
Numerical Continuation And Bifurcation In Nonlinear Pdes written by Hannes Uecker and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-19 with Mathematics categories.
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Elements Of Applied Bifurcation Theory
DOWNLOAD
Author : Yuri Kuznetsov
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-06-29
Elements Of Applied Bifurcation Theory written by Yuri Kuznetsov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-29 with Mathematics categories.
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Computational Science Iccs 2004
DOWNLOAD
Author : Marian Bubak
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-05-25
Computational Science Iccs 2004 written by Marian Bubak and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-25 with Computers categories.
The International Conference on Computational Science (ICCS 2004) held in Krak ́ ow, Poland, June 6–9, 2004, was a follow-up to the highly successful ICCS 2003 held at two locations, in Melbourne, Australia and St. Petersburg, Russia; ICCS 2002 in Amsterdam, The Netherlands; and ICCS 2001 in San Francisco, USA. As computational science is still evolving in its quest for subjects of inves- gation and e?cient methods, ICCS 2004 was devised as a forum for scientists from mathematics and computer science, as the basic computing disciplines and application areas, interested in advanced computational methods for physics, chemistry, life sciences, engineering, arts and humanities, as well as computer system vendors and software developers. The main objective of this conference was to discuss problems and solutions in all areas, to identify new issues, to shape future directions of research, and to help users apply various advanced computational techniques. The event harvested recent developments in com- tationalgridsandnextgenerationcomputingsystems,tools,advancednumerical methods, data-driven systems, and novel application ?elds, such as complex - stems, ?nance, econo-physics and population evolution.
Shock Waves And Reaction Diffusion Equations
DOWNLOAD
Author : Joel Smoller
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Shock Waves And Reaction Diffusion Equations written by Joel Smoller and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.
Bifurcation Analysis Of Fluid Flows
DOWNLOAD
Author : Henk A. Dijkstra
language : en
Publisher: Cambridge University Press
Release Date : 2023-08-24
Bifurcation Analysis Of Fluid Flows written by Henk A. Dijkstra and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-24 with Science categories.
A better understanding of the mechanisms leading a fluid system to exhibit turbulent behavior is one of the grand challenges of the physical and mathematical sciences. Over the last few decades, numerical bifurcation methods have been extended and applied to a number of flow problems to identify critical conditions for fluid instabilities to occur. This book provides a state-of-the-art account of these numerical methods, with much attention to modern linear systems solvers and generalized eigenvalue solvers. These methods also have a broad applicability in industrial, environmental and astrophysical flows. The book is a must-have reference for anyone working in scientific fields where fluid flow instabilities play a role. Exercises at the end of each chapter and Python code for the bifurcation analysis of canonical fluid flow problems provide practice material to get to grips with the methods and concepts presented in the book.
Numerical Methods For Bifurcation Problems And Large Scale Dynamical Systems
DOWNLOAD
Author : Eusebius Doedel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Numerical Methods For Bifurcation Problems And Large Scale Dynamical Systems written by Eusebius Doedel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.
Practical Bifurcation And Stability Analysis
DOWNLOAD
Author : Rüdiger Seydel
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-12-14
Practical Bifurcation And Stability Analysis written by Rüdiger Seydel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-14 with Mathematics categories.
Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.
Nonlinear Dynamics
DOWNLOAD
Author : Marc R Roussel
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2019-05-01
Nonlinear Dynamics written by Marc R Roussel and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-01 with Science categories.
This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented.