[PDF] Numerical Linear Algebra And Matrix Factorizations - eBooks Review

Numerical Linear Algebra And Matrix Factorizations


Numerical Linear Algebra And Matrix Factorizations
DOWNLOAD

Download Numerical Linear Algebra And Matrix Factorizations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Linear Algebra And Matrix Factorizations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Numerical Linear Algebra And Matrix Factorizations


Numerical Linear Algebra And Matrix Factorizations
DOWNLOAD
Author : Tom Lyche
language : en
Publisher: Springer Nature
Release Date : 2020-03-02

Numerical Linear Algebra And Matrix Factorizations written by Tom Lyche and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-02 with Mathematics categories.


After reading this book, students should be able to analyze computational problems in linear algebra such as linear systems, least squares- and eigenvalue problems, and to develop their own algorithms for solving them. Since these problems can be large and difficult to handle, much can be gained by understanding and taking advantage of special structures. This in turn requires a good grasp of basic numerical linear algebra and matrix factorizations. Factoring a matrix into a product of simpler matrices is a crucial tool in numerical linear algebra, because it allows us to tackle complex problems by solving a sequence of easier ones. The main characteristics of this book are as follows: It is self-contained, only assuming that readers have completed first-year calculus and an introductory course on linear algebra, and that they have some experience with solving mathematical problems on a computer. The book provides detailed proofs of virtually all results. Further, its respective parts can be used independently, making it suitable for self-study. The book consists of 15 chapters, divided into five thematically oriented parts. The chapters are designed for a one-week-per-chapter, one-semester course. To facilitate self-study, an introductory chapter includes a brief review of linear algebra.



Exercises In Numerical Linear Algebra And Matrix Factorizations


Exercises In Numerical Linear Algebra And Matrix Factorizations
DOWNLOAD
Author : Tom Lyche
language : en
Publisher: Springer Nature
Release Date : 2020-11-02

Exercises In Numerical Linear Algebra And Matrix Factorizations written by Tom Lyche and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-02 with Mathematics categories.


To put the world of linear algebra to advanced use, it is not enough to merely understand the theory; there is a significant gap between the theory of linear algebra and its myriad expressions in nearly every computational domain. To bridge this gap, it is essential to process the theory by solving many exercises, thus obtaining a firmer grasp of its diverse applications. Similarly, from a theoretical perspective, diving into the literature on advanced linear algebra often reveals more and more topics that are deferred to exercises instead of being treated in the main text. As exercises grow more complex and numerous, it becomes increasingly important to provide supporting material and guidelines on how to solve them, supporting students’ learning process. This book provides precisely this type of supporting material for the textbook “Numerical Linear Algebra and Matrix Factorizations,” published as Vol. 22 of Springer’s Texts in Computational Science and Engineering series. Instead of omitting details or merely providing rough outlines, this book offers detailed proofs, and connects the solutions to the corresponding results in the textbook. For the algorithmic exercises the utmost level of detail is provided in the form of MATLAB implementations. Both the textbook and solutions are self-contained. This book and the textbook are of similar length, demonstrating that solutions should not be considered a minor aspect when learning at advanced levels.



Numerical Algebra Matrix Theory Differential Algebraic Equations And Control Theory


Numerical Algebra Matrix Theory Differential Algebraic Equations And Control Theory
DOWNLOAD
Author : Peter Benner
language : en
Publisher: Springer
Release Date : 2015-05-09

Numerical Algebra Matrix Theory Differential Algebraic Equations And Control Theory written by Peter Benner and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-09 with Mathematics categories.


This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.



Nonnegative Matrix Factorization


Nonnegative Matrix Factorization
DOWNLOAD
Author : Nicolas Gillis
language : en
Publisher: SIAM
Release Date : 2020-12-18

Nonnegative Matrix Factorization written by Nicolas Gillis and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-18 with Mathematics categories.


Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.



A Journey Through The History Of Numerical Linear Algebra


A Journey Through The History Of Numerical Linear Algebra
DOWNLOAD
Author : Claude Brezinski
language : en
Publisher: SIAM
Release Date : 2022-12-06

A Journey Through The History Of Numerical Linear Algebra written by Claude Brezinski and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-06 with Mathematics categories.


This expansive volume describes the history of numerical methods proposed for solving linear algebra problems, from antiquity to the present day. The authors focus on methods for linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, people involved in scientific computing, and historians of mathematics.



Linear Algebra And Optimization For Machine Learning


Linear Algebra And Optimization For Machine Learning
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Nature
Release Date : 2020-05-13

Linear Algebra And Optimization For Machine Learning written by Charu C. Aggarwal and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-13 with Computers categories.


This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.



Matrix Algebra


Matrix Algebra
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-06

Matrix Algebra written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-06 with Mathematics categories.


Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. The first part of this book presents the relevant aspects of the theory of matrix algebra for applications in statistics. This part begins with the fundamental concepts of vectors and vector spaces, next covers the basic algebraic properties of matrices, then describes the analytic properties of vectors and matrices in the multivariate calculus, and finally discusses operations on matrices in solutions of linear systems and in eigenanalysis. This part is essentially self-contained. The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics. The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations. The book includes a large number of exercises with some solutions provided in an appendix.



Numerical Linear Algebra In Signals Systems And Control


Numerical Linear Algebra In Signals Systems And Control
DOWNLOAD
Author : Paul Van Dooren
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-05-21

Numerical Linear Algebra In Signals Systems And Control written by Paul Van Dooren and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-21 with Technology & Engineering categories.


The purpose of Numerical Linear Algebra in Signals, Systems and Control is to present an interdisciplinary book, blending linear and numerical linear algebra with three major areas of electrical engineering: Signal and Image Processing, and Control Systems and Circuit Theory. Numerical Linear Algebra in Signals, Systems and Control will contain articles, both the state-of-the-art surveys and technical papers, on theory, computations, and applications addressing significant new developments in these areas. The goal of the volume is to provide authoritative and accessible accounts of the fast-paced developments in computational mathematics, scientific computing, and computational engineering methods, applications, and algorithms. The state-of-the-art surveys will benefit, in particular, beginning researchers, graduate students, and those contemplating to start a new direction of research in these areas. A more general goal is to foster effective communications and exchange of information between various scientific and engineering communities with mutual interests in concepts, computations, and workable, reliable practices.



Numerical Matrix Analysis


Numerical Matrix Analysis
DOWNLOAD
Author : Ilse C. F. Ipsen
language : en
Publisher: SIAM
Release Date : 2009-01-01

Numerical Matrix Analysis written by Ilse C. F. Ipsen and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-01 with Mathematics categories.


The purpose of this book is to promote understanding of two phenomena: sensitivity of linear systems and least squares problems, and numerical stability of algorithms. Sensitivity and stability are analyzed as mathematical properties, without reference to finite precision arithmetic. The material is presented at a basic level, emphasizing ideas and intuition, but in a mathematically rigorous fashion. The derivations are simple and elegant, and the results are easy to understand and interpret. The book is self-contained. It was written for students in all areas of mathematics, engineering, and the computational sciences, but can easily be used for self-study. This text differs from other numerical linear algebra texts by offering the following: a systematic development of numerical conditioning; a simplified concept of numerical stability in exact arithmetic; simple derivations; a high-level view of algorithms; and results for complex matrices.



Numerical Linear Algebra For Applications In Statistics


Numerical Linear Algebra For Applications In Statistics
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Numerical Linear Algebra For Applications In Statistics written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Numerical linear algebra is one of the most important subjects in the field of statistical computing. Statistical methods in many areas of application require computations with vectors and matrices. This book describes accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. An understanding of numerical linear algebra requires basic knowledge both of linear algebra and of how numerical data are stored and manipulated in the computer. The book begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, matrix factorizations, matrix and vector norms, and other topics in linear algebra; hence, the book is essentially self- contained. The topics addressed in this bookconstitute the most important material for an introductory course in statistical computing, and should be covered in every such course. The book includes exercises and can be used as a text for a first course in statistical computing or as supplementary text for various courses that emphasize computations. James Gentle is University Professor of Computational Statistics at George Mason University. During a thirteen-year hiatus from academic work before joining George Mason, he was director of research and design at the world's largest independent producer of Fortran and C general-purpose scientific software libraries. These libraries implement many algorithms for numerical linear algebra. He is a Fellow of the American Statistical Association and member of the International Statistical Institute. He has held several national