[PDF] Numerical Methods For Partial Differential Equations - eBooks Review

Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD

Download Numerical Methods For Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : William F. Ames
language : en
Publisher:
Release Date : 1969

Numerical Methods For Partial Differential Equations written by William F. Ames and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1969 with Mathematics categories.




Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : William F. Ames
language : en
Publisher: Academic Press
Release Date : 2014-06-28

Numerical Methods For Partial Differential Equations written by William F. Ames and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Mathematics categories.


This volume is designed as an introduction to the concepts of modern numerical analysis as they apply to partial differential equations. The book contains many practical problems and their solutions, but at the same time, strives to expose the pitfalls--such as overstability, consistency requirements, and the danger of extrapolation to nonlinear problems methods used on linear problems. Numerical Methods for Partial Differential Equations, Third Edition reflects the great accomplishments that have taken place in scientific computation in the fifteen years since the Second Edition was published. This new edition is a drastic revision of the previous one, with new material on boundary elements, spectral methods, the methods of lines, and invariant methods. At the same time, the new edition retains the self-contained nature of the older version, and shares the clarity of its exposition and the integrity of its presentation. Material on finite elements and finite differences have been merged, and now constitute equal partners Additional material has been added on boundary elements, spectral methods, the method of lines, and invariant methods References have been updated, and reflect the additional material Self-contained nature of the Second Edition has been maintained Very suitable for PDE courses



Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : William F. Ames
language : en
Publisher: Academic Press
Release Date : 2014-05-10

Numerical Methods For Partial Differential Equations written by William F. Ames and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.


Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.



Numerical Analysis Of Partial Differential Equations Using Maple And Matlab


Numerical Analysis Of Partial Differential Equations Using Maple And Matlab
DOWNLOAD
Author : Martin J. Gander
language : en
Publisher: SIAM
Release Date : 2018-01-01

Numerical Analysis Of Partial Differential Equations Using Maple And Matlab written by Martin J. Gander and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-01 with Science categories.


This book provides an elementary yet comprehensive introduction to the numerical solution of partial differential equations (PDEs). Used to model important phenomena, such as the heating of apartments and the behavior of electromagnetic waves, these equations have applications in engineering and the life sciences, and most can only be solved approximately using computers. Numerical Analysis of Partial Differential Equations Using Maple and MATLAB provides detailed descriptions of the four major classes of discretization methods for PDEs (finite difference method, finite volume method, spectral method, and finite element method) and runnable MATLAB? code for each of the discretization methods and exercises. It also gives self-contained convergence proofs for each method using the tools and techniques required for the general convergence analysis but adapted to the simplest setting to keep the presentation clear and complete. This book is intended for advanced undergraduate and early graduate students in numerical analysis and scientific computing and researchers in related fields. It is appropriate for a course on numerical methods for partial differential equations.



Numerical Solution Of Partial Differential Equations


Numerical Solution Of Partial Differential Equations
DOWNLOAD
Author : Gordon D. Smith
language : en
Publisher: Oxford University Press
Release Date : 1985

Numerical Solution Of Partial Differential Equations written by Gordon D. Smith and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985 with Computers categories.


Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.



Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Sandip Mazumder
language : en
Publisher: Academic Press
Release Date : 2015-12-01

Numerical Methods For Partial Differential Equations written by Sandip Mazumder and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-01 with Mathematics categories.


Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives



Numerical Methods For Elliptic And Parabolic Partial Differential Equations


Numerical Methods For Elliptic And Parabolic Partial Differential Equations
DOWNLOAD
Author : Peter Knabner
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-26

Numerical Methods For Elliptic And Parabolic Partial Differential Equations written by Peter Knabner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-26 with Mathematics categories.


This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.



Numerical Methods For Partial Differential Equations


Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : You-Lan Zhu
language : en
Publisher:
Release Date : 2014-01-15

Numerical Methods For Partial Differential Equations written by You-Lan Zhu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-15 with categories.




Numerical Solution Of Partial Differential Equations In Science And Engineering


Numerical Solution Of Partial Differential Equations In Science And Engineering
DOWNLOAD
Author : Leon Lapidus
language : en
Publisher: John Wiley & Sons
Release Date : 2011-02-14

Numerical Solution Of Partial Differential Equations In Science And Engineering written by Leon Lapidus and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-14 with Mathematics categories.


From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.



Numerical Solution Of Partial Differential Equations On Parallel Computers


Numerical Solution Of Partial Differential Equations On Parallel Computers
DOWNLOAD
Author : Are Magnus Bruaset
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-05

Numerical Solution Of Partial Differential Equations On Parallel Computers written by Are Magnus Bruaset and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-05 with Mathematics categories.


Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.