[PDF] Numerical Optimization With Computational Errors - eBooks Review

Numerical Optimization With Computational Errors


Numerical Optimization With Computational Errors
DOWNLOAD

Download Numerical Optimization With Computational Errors PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Optimization With Computational Errors book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Numerical Optimization With Computational Errors


Numerical Optimization With Computational Errors
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer
Release Date : 2016-04-22

Numerical Optimization With Computational Errors written by Alexander J. Zaslavski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-22 with Mathematics categories.


This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.



Convex Optimization With Computational Errors


Convex Optimization With Computational Errors
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2020-01-31

Convex Optimization With Computational Errors written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Mathematics categories.


The book is devoted to the study of approximate solutions of optimization problems in the presence of computational errors. It contains a number of results on the convergence behavior of algorithms in a Hilbert space, which are known as important tools for solving optimization problems. The research presented in the book is the continuation and the further development of the author's (c) 2016 book Numerical Optimization with Computational Errors, Springer 2016. Both books study the algorithms taking into account computational errors which are always present in practice. The main goal is, for a known computational error, to find out what an approximate solution can be obtained and how many iterates one needs for this. The main difference between this new book and the 2016 book is that in this present book the discussion takes into consideration the fact that for every algorithm, its iteration consists of several steps and that computational errors for different steps are generally, different. This fact, which was not taken into account in the previous book, is indeed important in practice. For example, the subgradient projection algorithm consists of two steps. The first step is a calculation of a subgradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error and these two computational errors are different in general. It may happen that the feasible set is simple and the objective function is complicated. As a result, the computational error, made when one calculates the projection, is essentially smaller than the computational error of the calculation of the subgradient. Clearly, an opposite case is possible too. Another feature of this book is a study of a number of important algorithms which appeared recently in the literature and which are not discussed in the previous book. This monograph contains 12 chapters. Chapter 1 is an introduction. In Chapter 2 we study the subgradient projection algorithm for minimization of convex and nonsmooth functions. We generalize the results of [NOCE] and establish results which has no prototype in [NOCE]. In Chapter 3 we analyze the mirror descent algorithm for minimization of convex and nonsmooth functions, under the presence of computational errors. For this algorithm each iteration consists of two steps. The first step is a calculation of a subgradient of the objective function while in the second one we solve an auxiliary minimization problem on the set of feasible points. In each of these two steps there is a computational error. We generalize the results of [NOCE] and establish results which has no prototype in [NOCE]. In Chapter 4 we analyze the projected gradient algorithm with a smooth objective function under the presence of computational errors. In Chapter 5 we consider an algorithm, which is an extension of the projection gradient algorithm used for solving linear inverse problems arising in signal/image processing. In Chapter 6 we study continuous subgradient method and continuous subgradient projection algorithm for minimization of convex nonsmooth functions and for computing the saddle points of convex-concave functions, under the presence of computational errors. All the results of this chapter has no prototype in [NOCE]. In Chapters 7-12 we analyze several algorithms under the presence of computational errors which were not considered in [NOCE]. Again, each step of an iteration has a computational errors and we take into account that these errors are, in general, different. An optimization problems with a composite objective function is studied in Chapter 7. A zero-sum game with two-players is considered in Chapter 8. A predicted decrease approximation-based method is used in Chapter 9 for constrained convex optimization. Chapter 10 is devoted to minimization of quasiconvex functions. Minimization of sharp weakly convex functions is discussed in Chapter 11. Chapter 12 is devoted to a generalized projected subgradient method for minimization of a convex function over a set which is not necessarily convex. The book is of interest for researchers and engineers working in optimization. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of the influence of computational errors for several important optimization algorithms. The book is of interest for experts in applications of optimization to engineering and economics.



Computational Methods For Inverse Problems


Computational Methods For Inverse Problems
DOWNLOAD
Author : Curtis R. Vogel
language : en
Publisher: SIAM
Release Date : 2002-01-01

Computational Methods For Inverse Problems written by Curtis R. Vogel and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Mathematics categories.


Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.



Numerical Optimization


Numerical Optimization
DOWNLOAD
Author : Jorge Nocedal
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-06-06

Numerical Optimization written by Jorge Nocedal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-06-06 with Mathematics categories.


This is a book for people interested in solving optimization problems. Because of the wide (and growing) use of optimization in science, engineering, economics, and industry, it is essential for students and practitioners alike to develop an understanding of optimization algorithms. Knowledge of the capabilities and limitations of these algorithms leads to a better understanding of their impact on various applications, and points the way to future research on improving and extending optimization algorithms and software. Our goal in this book is to give a comprehensive description of the most powerful, state-of-the-art, techniques for solving continuous optimization problems. By presenting the motivating ideas for each algorithm, we try to stimulate the reader’s intuition and make the technical details easier to follow. Formal mathematical requirements are kept to a minimum. Because of our focus on continuous problems, we have omitted discussion of important optimization topics such as discrete and stochastic optimization.



The Projected Subgradient Algorithm In Convex Optimization


The Projected Subgradient Algorithm In Convex Optimization
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2020-11-25

The Projected Subgradient Algorithm In Convex Optimization written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Mathematics categories.


This focused monograph presents a study of subgradient algorithms for constrained minimization problems in a Hilbert space. The book is of interest for experts in applications of optimization to engineering and economics. The goal is to obtain a good approximate solution of the problem in the presence of computational errors. The discussion takes into consideration the fact that for every algorithm its iteration consists of several steps and that computational errors for different steps are different, in general. The book is especially useful for the reader because it contains solutions to a number of difficult and interesting problems in the numerical optimization. The subgradient projection algorithm is one of the most important tools in optimization theory and its applications. An optimization problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step requires a calculation of a subgradient of the objective function; the second requires a calculation of a projection on the feasible set. The computational errors in each of these two steps are different. This book shows that the algorithm discussed, generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if computational errors for the two steps of the algorithm are known, one discovers an approximate solution and how many iterations one needs for this. In addition to their mathematical interest, the generalizations considered in this book have a significant practical meaning.



Numerical Algorithms


Numerical Algorithms
DOWNLOAD
Author : Justin Solomon
language : en
Publisher: CRC Press
Release Date : 2015-06-24

Numerical Algorithms written by Justin Solomon and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-24 with Computers categories.


Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig



Numerical Methods And Optimization


Numerical Methods And Optimization
DOWNLOAD
Author : Éric Walter
language : en
Publisher: Springer
Release Date : 2014-07-22

Numerical Methods And Optimization written by Éric Walter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-22 with Technology & Engineering categories.


Initial training in pure and applied sciences tends to present problem-solving as the process of elaborating explicit closed-form solutions from basic principles, and then using these solutions in numerical applications. This approach is only applicable to very limited classes of problems that are simple enough for such closed-form solutions to exist. Unfortunately, most real-life problems are too complex to be amenable to this type of treatment. Numerical Methods – a Consumer Guide presents methods for dealing with them. Shifting the paradigm from formal calculus to numerical computation, the text makes it possible for the reader to · discover how to escape the dictatorship of those particular cases that are simple enough to receive a closed-form solution, and thus gain the ability to solve complex, real-life problems; · understand the principles behind recognized algorithms used in state-of-the-art numerical software; · learn the advantages and limitations of these algorithms, to facilitate the choice of which pre-existing bricks to assemble for solving a given problem; and · acquire methods that allow a critical assessment of numerical results. Numerical Methods – a Consumer Guide will be of interest to engineers and researchers who solve problems numerically with computers or supervise people doing so, and to students of both engineering and applied mathematics.



Numerical Optimization


Numerical Optimization
DOWNLOAD
Author : Jorge Nocedal
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-12-11

Numerical Optimization written by Jorge Nocedal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-12-11 with Mathematics categories.


Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.



Uncertainty Quantification In Variational Inequalities


Uncertainty Quantification In Variational Inequalities
DOWNLOAD
Author : Joachim Gwinner
language : en
Publisher: CRC Press
Release Date : 2021-12-21

Uncertainty Quantification In Variational Inequalities written by Joachim Gwinner and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-21 with Mathematics categories.


Uncertainty Quantification (UQ) is an emerging and extremely active research discipline which aims to quantitatively treat any uncertainty in applied models. The primary objective of Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications is to present a comprehensive treatment of UQ in variational inequalities and some of its generalizations emerging from various network, economic, and engineering models. Some of the developed techniques also apply to machine learning, neural networks, and related fields. Features First book on UQ in variational inequalities emerging from various network, economic, and engineering models Completely self-contained and lucid in style Aimed for a diverse audience including applied mathematicians, engineers, economists, and professionals from academia Includes the most recent developments on the subject which so far have only been available in the research literature



Mathematical Theory Of Optimization


Mathematical Theory Of Optimization
DOWNLOAD
Author : Ding-Zhu Du
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-10-31

Mathematical Theory Of Optimization written by Ding-Zhu Du and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-10-31 with Computers categories.


This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.