Numerical Solution Of Ordinary Differential Equations

DOWNLOAD
Download Numerical Solution Of Ordinary Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Solution Of Ordinary Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Numerical Solution Of Ordinary And Partial Differential Equations The 3rd Edition
DOWNLOAD
Author : Granville Sewell
language : en
Publisher: World Scientific
Release Date : 2014-12-16
Numerical Solution Of Ordinary And Partial Differential Equations The 3rd Edition written by Granville Sewell and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-16 with Mathematics categories.
This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A.The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions.The Windows version of PDE2D comes free with every purchase of this book. More information at www.pde2d.com/contact.
Numerical Methods For Ordinary Differential Equations
DOWNLOAD
Author : David F. Griffiths
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-11
Numerical Methods For Ordinary Differential Equations written by David F. Griffiths and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-11 with Mathematics categories.
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Numerical Solution Of Ordinary Differential Equations
DOWNLOAD
Author : Donald Greenspan
language : en
Publisher: John Wiley & Sons
Release Date : 2008-09-26
Numerical Solution Of Ordinary Differential Equations written by Donald Greenspan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-26 with Science categories.
This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic systems. The examples are carefully explained and compiled into an algorithm, each of which is presented independent of a specific programming language. Each chapter is rounded off with exercises.
Numerical Solution Of Ordinary Differential Equations
DOWNLOAD
Author : L.F. Shampine
language : en
Publisher: CRC Press
Release Date : 1994-03-01
Numerical Solution Of Ordinary Differential Equations written by L.F. Shampine and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-03-01 with Mathematics categories.
This book is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations (ODEs). It describes how typical problems can be formulated in a way that permits their solution with standard codes.
Introduction To Numerical Methods In Differential Equations
DOWNLOAD
Author : Mark H. Holmes
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-05
Introduction To Numerical Methods In Differential Equations written by Mark H. Holmes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-05 with Mathematics categories.
The title gives a reasonable ?rst-order approximation to what this book is about. To explain why, let’s start with the expression “di?erential equations.” These are essential in science and engineering, because the laws of nature t- ically result in equations relating spatial and temporal changes in one or more variables.Todevelopanunderstandingofwhatisinvolvedin?ndingsolutions, the book begins with problems involving derivatives for only one independent variable, and these give rise to ordinary di?erential equations. Speci?cally, the ?rst chapter considers initial value problems (time derivatives), and the second concentrates on boundary value problems (space derivatives). In the succeeding four chapters problems involving both time and space derivatives, partial di?erential equations, are investigated. This brings us to the next expression in the title: “numerical methods.” This is a book about how to transform differential equations into problems that can be solved using a computer.The fact is that computers are only able to solve discrete problems and generally do this using ?nite-precision arithmetic. What this means is that in deriving and then using a numerical algorithmthecorrectnessofthediscreteapproximationmustbeconsidered,as must the consequences of round-o? error in using ?oating-point arithmetic to calculatetheanswer.Oneoftheinterestingaspectsofthesubjectisthatwhat appears to be an obviously correct numerical method can result in complete failure. Consequently, although the book concentrates on the derivation and use of numerical methods, the theoretical underpinnings are also presented andusedinthedevelopment.
Numerical Solution Of Boundary Value Problems For Ordinary Differential Equations
DOWNLOAD
Author : Uri M. Ascher
language : en
Publisher: SIAM
Release Date : 1988-01-01
Numerical Solution Of Boundary Value Problems For Ordinary Differential Equations written by Uri M. Ascher and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-01-01 with Mathematics categories.
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Numerical Solution Of Ordinary Differential Equations
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 1971-03-31
Numerical Solution Of Ordinary Differential Equations written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971-03-31 with Mathematics categories.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Numerical Methods For Ordinary Differential Equations
DOWNLOAD
Author : J. C. Butcher
language : en
Publisher: John Wiley & Sons
Release Date : 2004-08-20
Numerical Methods For Ordinary Differential Equations written by J. C. Butcher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-08-20 with Mathematics categories.
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.
Numerical Solution Of Ordinary Differential Equations
DOWNLOAD
Author : Kendall Atkinson
language : en
Publisher: John Wiley & Sons
Release Date : 2011-10-24
Numerical Solution Of Ordinary Differential Equations written by Kendall Atkinson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-24 with Mathematics categories.
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.
Numerical Methods For Ordinary Differential Equations
DOWNLOAD
Author : J. C. Butcher
language : en
Publisher: John Wiley & Sons
Release Date : 2008-04-15
Numerical Methods For Ordinary Differential Equations written by J. C. Butcher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-15 with Mathematics categories.
In recent years the study of numerical methods for solving ordinary differential equations has seen many new developments. This second edition of the author's pioneering text is fully revised and updated to acknowledge many of these developments. It includes a complete treatment of linear multistep methods whilst maintaining its unique and comprehensive emphasis on Runge-Kutta methods and general linear methods. Although the specialist topics are taken to an advanced level, the entry point to the volume as a whole is not especially demanding. Early chapters provide a wide-ranging introduction to differential equations and difference equations together with a survey of numerical differential equation methods, based on the fundamental Euler method with more sophisticated methods presented as generalizations of Euler. Features of the book include Introductory work on differential and difference equations. A comprehensive introduction to the theory and practice of solving ordinary differential equations numerically. A detailed analysis of Runge-Kutta methods and of linear multistep methods. A complete study of general linear methods from both theoretical and practical points of view. The latest results on practical general linear methods and their implementation. A balance between informal discussion and rigorous mathematical style. Examples and exercises integrated into each chapter enhancing the suitability of the book as a course text or a self-study treatise. Written in a lucid style by one of the worlds leading authorities on numerical methods for ordinary differential equations and drawing upon his vast experience, this new edition provides an accessible and self-contained introduction, ideal for researchers and students following courses on numerical methods, engineering and other sciences.