Numerical Solution Of Partial Differential Equations Using The Finite Element Method


Numerical Solution Of Partial Differential Equations Using The Finite Element Method
DOWNLOAD eBooks

Download Numerical Solution Of Partial Differential Equations Using The Finite Element Method PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Solution Of Partial Differential Equations Using The Finite Element Method book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Numerical Solution Of Partial Differential Equations By The Finite Element Method


Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD eBooks

Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23

Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.


An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.



Numerical Solution Of Partial Differential Equations By The Finite Element Method


Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD eBooks

Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2009-01-15

Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-15 with Mathematics categories.


This accessible introduction offers the keys to an important technique in computational mathematics. It outlines clear connections with applications and considers numerous examples from a variety of specialties. 1987 edition.



Numerical Solution Of Partial Differential Equations By The Finite Element Method


Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD eBooks

Author : Claes Johnson
language : en
Publisher:
Release Date : 1987

Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987 with categories.




Numerical Solution Of Partial Differential Equations Using The Finite Element Method


Numerical Solution Of Partial Differential Equations Using The Finite Element Method
DOWNLOAD eBooks

Author : Wieland Richter
language : en
Publisher:
Release Date : 1990

Numerical Solution Of Partial Differential Equations Using The Finite Element Method written by Wieland Richter and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Differential equations, Partial categories.




The Numerical Solution Of Ordinary And Partial Differential Equations


The Numerical Solution Of Ordinary And Partial Differential Equations
DOWNLOAD eBooks

Author : Granville Sewell
language : en
Publisher: World Scientific
Release Date : 2014-12-16

The Numerical Solution Of Ordinary And Partial Differential Equations written by Granville Sewell and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-16 with Mathematics categories.


This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland



Numerical Solution Of Partial Differential Equations In Science And Engineering


Numerical Solution Of Partial Differential Equations In Science And Engineering
DOWNLOAD eBooks

Author : Leon Lapidus
language : en
Publisher: John Wiley & Sons
Release Date : 2011-02-14

Numerical Solution Of Partial Differential Equations In Science And Engineering written by Leon Lapidus and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-14 with Mathematics categories.


From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.



Mathematical Aspects Of Finite Elements In Partial Differential Equations


Mathematical Aspects Of Finite Elements In Partial Differential Equations
DOWNLOAD eBooks

Author : Carl de Boor
language : en
Publisher: Academic Press
Release Date : 2014-05-10

Mathematical Aspects Of Finite Elements In Partial Differential Equations written by Carl de Boor and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.


Mathematical Aspects of Finite Elements in Partial Differential Equations addresses the mathematical questions raised by the use of finite elements in the numerical solution of partial differential equations. This book covers a variety of topics, including finite element method, hyperbolic partial differential equation, and problems with interfaces. Organized into 13 chapters, this book begins with an overview of the class of finite element subspaces with numerical examples. This text then presents as models the Dirichlet problem for the potential and bipotential operator and discusses the question of non-conforming elements using the classical Ritz- and least-squares-method. Other chapters consider some error estimates for the Galerkin problem by such energy considerations. This book discusses as well the spatial discretization of problem and presents the Galerkin method for ordinary differential equations using polynomials of degree k. The final chapter deals with the continuous-time Galerkin method for the heat equation. This book is a valuable resource for mathematicians.



Computational Partial Differential Equations Using Matlab


Computational Partial Differential Equations Using Matlab
DOWNLOAD eBooks

Author : Jichun Li
language : en
Publisher: CRC Press
Release Date : 2019-09-26

Computational Partial Differential Equations Using Matlab written by Jichun Li and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-26 with Mathematics categories.


In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques including the classic finite difference method, finite element method, and state-of-the-art numercial methods.The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB. This new edition includes a new chapter, Finite Value Method, the presentation has been tightened, new exercises and applications are included, and the text refers now to the latest release of MATLAB. Key Selling Points: A successful textbook for an undergraduate text on numerical analysis or methods taught in mathematics and computer engineering. This course is taught in every university throughout the world with an engineering department or school. Competitive advantage broader numerical methods (including finite difference, finite element, meshless method, and finite volume method), provides the MATLAB source code for most popular PDEs with detailed explanation about the implementation and theoretical analysis. No other existing textbook in the market offers a good combination of theoretical depth and practical source codes.



Numerical Analysis Of Partial Differential Equations Using Maple And Matlab


Numerical Analysis Of Partial Differential Equations Using Maple And Matlab
DOWNLOAD eBooks

Author : Martin J. Gander
language : en
Publisher: SIAM
Release Date : 2018-01-01

Numerical Analysis Of Partial Differential Equations Using Maple And Matlab written by Martin J. Gander and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-01 with Science categories.


This book provides an elementary yet comprehensive introduction to the numerical solution of partial differential equations (PDEs). Used to model important phenomena, such as the heating of apartments and the behavior of electromagnetic waves, these equations have applications in engineering and the life sciences, and most can only be solved approximately using computers. Numerical Analysis of Partial Differential Equations Using Maple and MATLAB provides detailed descriptions of the four major classes of discretization methods for PDEs (finite difference method, finite volume method, spectral method, and finite element method) and runnable MATLAB? code for each of the discretization methods and exercises. It also gives self-contained convergence proofs for each method using the tools and techniques required for the general convergence analysis but adapted to the simplest setting to keep the presentation clear and complete. This book is intended for advanced undergraduate and early graduate students in numerical analysis and scientific computing and researchers in related fields. It is appropriate for a course on numerical methods for partial differential equations.



Partial Differential Equations And The Finite Element Method


Partial Differential Equations And The Finite Element Method
DOWNLOAD eBooks

Author : Pavel Ŝolín
language : en
Publisher: John Wiley & Sons
Release Date : 2005-12-16

Partial Differential Equations And The Finite Element Method written by Pavel Ŝolín and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-16 with Mathematics categories.


A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.