Operator Theory And Analysis Of Infinite Networks

DOWNLOAD
Download Operator Theory And Analysis Of Infinite Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Operator Theory And Analysis Of Infinite Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Operator Theory And Analysis Of Infinite Networks
DOWNLOAD
Author : Palle Jorgensen
language : en
Publisher: World Scientific
Release Date : 2023-03-21
Operator Theory And Analysis Of Infinite Networks written by Palle Jorgensen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-21 with Mathematics categories.
This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class of Markov chains.The present volume takes the nonstandard approach of analyzing resistance networks from the point of view of Hilbert space theory, where the inner product is defined in terms of Dirichlet energy. The resulting viewpoint emphasizes orthogonality over convexity and provides new insights into the connections between harmonic functions, operators, and boundary theory. Novel applications to mathematical physics are given, especially in regard to the question of self-adjointness of unbounded operators.New topics are covered in a host of areas accessible to multiple audiences, at both beginning and more advanced levels. This is accomplished by directly linking diverse applied questions to such key areas of mathematics as functional analysis, operator theory, harmonic analysis, optimization, approximation theory, and probability theory.
Operator Theory And Analysis Of Infinite Networks
DOWNLOAD
Author : Palle E. T. Jørgensen
language : en
Publisher: World Scientific Publishing Company
Release Date : 2023
Operator Theory And Analysis Of Infinite Networks written by Palle E. T. Jørgensen and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with Hilbert space categories.
This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class of Markov chains. The present volume takes the nonstandard approach of analyzing resistance networks from the point of view of Hilbert space theory, where the inner product is defined in terms of Dirichlet energy. The resulting viewpoint emphasizes orthogonality over convexity and provides new insights into the connections between harmonic functions, operators, and boundary theory. Novel applications to mathematical physics are given, especially in regard to the question of self-adjointness of unbounded operators. New topics are covered in a host of areas accessible to multiple audiences, at both beginning and more advanced levels. This is accomplished by directly linking diverse applied questions to such key areas of mathematics as functional analysis, operator theory, harmonic analysis, optimization, approximation theory, and probability theory.
Random Walks Boundaries And Spectra
DOWNLOAD
Author : Daniel Lenz
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-16
Random Walks Boundaries And Spectra written by Daniel Lenz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-16 with Mathematics categories.
These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.
Potential Theory On Infinite Networks
DOWNLOAD
Author : Paolo M. Soardi
language : en
Publisher: Springer
Release Date : 2006-11-15
Potential Theory On Infinite Networks written by Paolo M. Soardi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-15 with Mathematics categories.
The aim of the book is to give a unified approach to new developments in discrete potential theory and infinite network theory. The author confines himself to the finite energy case, but this does not result in loss of complexity. On the contrary, the functional analytic machinery may be used in analogy with potential theory on Riemann manifolds. The book is intended for researchers with interdisciplinary interests in one of the following fields: Markov chains, combinatorial graph theory, network theory, Dirichlet spaces, potential theory, abstract harmonic analysis, theory of boundaries.
Complex Analysis And Potential Theory
DOWNLOAD
Author : Andre Boivin
language : en
Publisher: American Mathematical Soc.
Release Date : 2012
Complex Analysis And Potential Theory written by Andre Boivin and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
This is the proceedings volume of an international conference entitled Complex Analysis and Potential Theory, which was held to honor the important contributions of two influential analysts, Kohur N. GowriSankaran and Paul M. Gauthier, in June 2011 at the Centre de Recherches Mathematiques (CRM) in Montreal. More than fifty mathematicians from fifteen countries participated in the conference. The twenty-four surveys and research articles contained in this book are based on the lectures given by some of the most established specialists in the fields. They reflect the wide breadth of research interests of the two honorees: from potential theory on trees to approximation on Riemann surfaces, from universality to inner and outer functions and the disc algebra, from branching processes to harmonic extension and capacities, from harmonic mappings and the Harnack principle to integration formulae in $\mathbb {C}^n$ and the Hartogs phenomenon, from fine harmonicity and plurisubharmonic functions to the binomial identity and the Riemann hypothesis, and more. This volume will be a valuable resource for specialists, young researchers, and graduate students from both fields, complex analysis and potential theory. It will foster further cooperation and the exchange of ideas and techniques to find new research perspectives.
Input To State Stability
DOWNLOAD
Author : Andrii Mironchenko
language : en
Publisher: Springer Nature
Release Date : 2023-03-30
Input To State Stability written by Andrii Mironchenko and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-30 with Science categories.
Input-to-State Stability presents the dominating stability paradigm in nonlinear control theory that revolutionized our view on stabilization of nonlinear systems, design of robust nonlinear observers, and stability of nonlinear interconnected control systems. The applications of input-to-state stability (ISS) are manifold and include mechatronics, aerospace engineering, and systems biology. Although the book concentrates on the ISS theory of finite-dimensional systems, it emphasizes the importance of a more general view of infinite-dimensional ISS theory. This permits the analysis of more general system classes and provides new perspectives on and a better understanding of the classical ISS theory for ordinary differential equations (ODEs). Features of the book include: • a comprehensive overview of the theoretical basis of ISS; • a description of the central applications of ISS in nonlinear control theory; • a detailed discussion of the role of small-gain methods in the stability of nonlinear networks; and • an in-depth comparison of ISS for finite- and infinite-dimensional systems. The book also provides a short overview of the ISS theory for other systems classes (partial differential equations, hybrid, impulsive, and time-delay systems) and surveys the available results for the important stability properties that are related to ISS. The reader should have a basic knowledge of analysis, Lebesgue integration theory, linear algebra, and the theory of ODEs but requires no prior knowledge of dynamical systems or stability theory. The author introduces all the necessary ideas within the book. Input-to-State Stability will interest researchers and graduate students studying nonlinear control from either a mathematical or engineering background. It is intended for active readers and contains numerous exercises of varying difficulty, which are integral to the text, complementing and widening the material developed in the monograph.
Infinite Dimensional Analysis Operators In Hilbert Space Stochastic Calculus Via Representations And Duality Theory
DOWNLOAD
Author : Palle Jorgensen
language : en
Publisher: World Scientific
Release Date : 2021-01-15
Infinite Dimensional Analysis Operators In Hilbert Space Stochastic Calculus Via Representations And Duality Theory written by Palle Jorgensen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-15 with Mathematics categories.
The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.
Harmonic Functions And Potentials On Finite Or Infinite Networks
DOWNLOAD
Author : Victor Anandam
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-27
Harmonic Functions And Potentials On Finite Or Infinite Networks written by Victor Anandam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-27 with Mathematics categories.
Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.
Brownian Motion And Potential Theory Modern And Classical
DOWNLOAD
Author : Palle Jorgensen
language : en
Publisher: World Scientific
Release Date : 2024-10-29
Brownian Motion And Potential Theory Modern And Classical written by Palle Jorgensen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-29 with Mathematics categories.
In this book, potential theory is presented in an inclusive and accessible manner, with the emphasis reaching from classical to modern, from analytic to probabilistic, and from Newtonian to abstract or axiomatic potential theory (including Dirichlet spaces). The reader is guided through stochastic analysis featuring Brownian motion in its early chapters to potential theory in its latter sections. This path covers the following themes: martingales, diffusion processes, semigroups and potential operators, analysis of super harmonic functions, Dirichlet problems, balayage, boundaries, and Green functions.The wide range of applications encompasses random walk models, especially reversible Markov processes, and statistical inference in machine learning models. However, the present volume considers the analysis from the point of view of function space theory, using Dirchlet energy as an inner product. This present volume is an expanded and revised version of an original set of lectures in the Aarhus University Mathematics Institute Lecture Note Series.
Non Commutative Analysis
DOWNLOAD
Author : Palle Jorgensen
language : en
Publisher: World Scientific
Release Date : 2017-01-24
Non Commutative Analysis written by Palle Jorgensen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-24 with Mathematics categories.
'This is a book to be read and worked with. For a beginning graduate student, this can be a valuable experience which at some points in fact leads up to recent research. For such a reader there is also historical information included and many comments aiming at an overview. It is inspiring and original how old material is combined and mixed with new material. There is always something unexpected included in each chapter, which one is thankful to see explained in this context and not only in research papers which are more difficult to access.'Mathematical Reviews ClippingsThe book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.