Optimal Control Novel Directions And Applications

DOWNLOAD
Download Optimal Control Novel Directions And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimal Control Novel Directions And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Optimal Control Novel Directions And Applications
DOWNLOAD
Author : Daniela Tonon
language : en
Publisher: Springer
Release Date : 2017-09-01
Optimal Control Novel Directions And Applications written by Daniela Tonon and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-01 with Mathematics categories.
Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.
Optimal Control
DOWNLOAD
Author : Daniela Tonon
language : en
Publisher:
Release Date : 2017
Optimal Control written by Daniela Tonon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Mathematical optimization categories.
Practical Methods For Optimal Control And Estimation Using Nonlinear Programming
DOWNLOAD
Author : John T. Betts
language : en
Publisher: SIAM
Release Date : 2010-01-01
Practical Methods For Optimal Control And Estimation Using Nonlinear Programming written by John T. Betts and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-01 with Mathematics categories.
The book describes how sparse optimization methods can be combined with discretization techniques for differential-algebraic equations and used to solve optimal control and estimation problems. The interaction between optimization and integration is emphasized throughout the book.
Reinforcement Learning And Optimal Control
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2019-07-01
Reinforcement Learning And Optimal Control written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-01 with Computers categories.
This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.
Optimal Control Theory And Static Optimization In Economics
DOWNLOAD
Author : Daniel Léonard
language : en
Publisher: Cambridge University Press
Release Date : 1992-01-31
Optimal Control Theory And Static Optimization In Economics written by Daniel Léonard and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992-01-31 with Business & Economics categories.
Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This textbook is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigour. Economic intuitions are emphasized, and examples and problem sets covering a wide range of applications in economics are provided to assist in the learning process. Theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with simple formulations and progressing to advanced topics such as control parameters, jumps in state variables, and bounded state space. For greater economy and elegance, optimal control theory is introduced directly, without recourse to the calculus of variations. The connection with the latter and with dynamic programming is explained in a separate chapter. A second purpose of the book is to draw the parallel between optimal control theory and static optimization. Chapter 1 provides an extensive treatment of constrained and unconstrained maximization, with emphasis on economic insight and applications. Starting from basic concepts, it derives and explains important results, including the envelope theorem and the method of comparative statics. This chapter may be used for a course in static optimization. The book is largely self-contained. No previous knowledge of differential equations is required.
Calculus Of Variations And Optimal Control Theory
DOWNLOAD
Author : Daniel Liberzon
language : en
Publisher: Princeton University Press
Release Date : 2012
Calculus Of Variations And Optimal Control Theory written by Daniel Liberzon and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Applied Optimal Control
DOWNLOAD
Author : A. E. Bryson
language : en
Publisher: CRC Press
Release Date : 1975-01-01
Applied Optimal Control written by A. E. Bryson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1975-01-01 with Technology & Engineering categories.
This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it “a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.”
Numerical Methods For Stochastic Control Problems In Continuous Time
DOWNLOAD
Author : Harold J. Kushner
language : en
Publisher: Springer Science & Business Media
Release Date : 2001
Numerical Methods For Stochastic Control Problems In Continuous Time written by Harold J. Kushner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Language Arts & Disciplines categories.
The required background is surveyed, and there is an extensive development of methods of approximation and computational algorithms. The book is written on two levels: algorithms and applications, and mathematical proofs. Thus, the ideas should be very accessible to a broad audience."--BOOK JACKET.
Collaborative Computing Networking Applications And Worksharing
DOWNLOAD
Author : Honghao Gao
language : en
Publisher: Springer Nature
Release Date : 2022-01-01
Collaborative Computing Networking Applications And Worksharing written by Honghao Gao and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-01 with Computers categories.
This two-volume set constitutes the refereed proceedings of the 17th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 62 full papers and 7 short papers presented were carefully reviewed and selected from 206 submissions. The papers reflect the conference sessions as follows: Optimization for Collaborate System; Optimization based on Collaborative Computing; UVA and Traffic system; Recommendation System; Recommendation System & Network and Security; Network and Security; Network and Security & IoT and Social Networks; IoT and Social Networks & Images handling and human recognition; Images handling and human recognition & Edge Computing; Edge Computing; Edge Computing & Collaborative working; Collaborative working & Deep Learning and application; Deep Learning and application; Deep Learning and application; Deep Learning and application & UVA.
Predictive Control For Linear And Hybrid Systems
DOWNLOAD
Author : Francesco Borrelli
language : en
Publisher: Cambridge University Press
Release Date : 2017-06-22
Predictive Control For Linear And Hybrid Systems written by Francesco Borrelli and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-22 with Mathematics categories.
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).