[PDF] Optimization For Machine Learning - eBooks Review

Optimization For Machine Learning


Optimization For Machine Learning
DOWNLOAD

Download Optimization For Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization For Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Optimization For Machine Learning


Optimization For Machine Learning
DOWNLOAD
Author : Suvrit Sra
language : en
Publisher: MIT Press
Release Date : 2012

Optimization For Machine Learning written by Suvrit Sra and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.


An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.



Linear Algebra And Optimization For Machine Learning


Linear Algebra And Optimization For Machine Learning
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Nature
Release Date : 2020-05-13

Linear Algebra And Optimization For Machine Learning written by Charu C. Aggarwal and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-13 with Computers categories.


This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.



First Order And Stochastic Optimization Methods For Machine Learning


First Order And Stochastic Optimization Methods For Machine Learning
DOWNLOAD
Author : Guanghui Lan
language : en
Publisher: Springer Nature
Release Date : 2020-05-15

First Order And Stochastic Optimization Methods For Machine Learning written by Guanghui Lan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-15 with Mathematics categories.


This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.



Optimization In Machine Learning And Applications


Optimization In Machine Learning And Applications
DOWNLOAD
Author : Anand J. Kulkarni
language : en
Publisher: Springer
Release Date : 2020-12-10

Optimization In Machine Learning And Applications written by Anand J. Kulkarni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-10 with Technology & Engineering categories.


This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.



Machine Learning And Optimization Models For Optimization In Cloud


Machine Learning And Optimization Models For Optimization In Cloud
DOWNLOAD
Author : Punit Gupta
language : en
Publisher: CRC Press
Release Date : 2022-02-27

Machine Learning And Optimization Models For Optimization In Cloud written by Punit Gupta and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-27 with Computers categories.


Machine Learning and Models for Optimization in Cloud’s main aim is to meet the user requirement with high quality of service, least time for computation and high reliability. With increase in services migrating over cloud providers, the load over the cloud increases resulting in fault and various security failure in the system results in decreasing reliability. To fulfill this requirement cloud system uses intelligent metaheuristic and prediction algorithm to provide resources to the user in an efficient manner to manage the performance of the system and plan for upcoming requests. Intelligent algorithm helps the system to predict and find a suitable resource for a cloud environment in real time with least computational complexity taking into mind the system performance in under loaded and over loaded condition. This book discusses the future improvements and possible intelligent optimization models using artificial intelligence, deep learning techniques and other hybrid models to improve the performance of cloud. Various methods to enhance the directivity of cloud services have been presented which would enable cloud to provide better services, performance and quality of service to user. It talks about the next generation intelligent optimization and fault model to improve security and reliability of cloud. Key Features · Comprehensive introduction to cloud architecture and its service models. · Vulnerability and issues in cloud SAAS, PAAS and IAAS · Fundamental issues related to optimizing the performance in Cloud Computing using meta-heuristic, AI and ML models · Detailed study of optimization techniques, and fault management techniques in multi layered cloud. · Methods to improve reliability and fault in cloud using nature inspired algorithms and artificial neural network. · Advanced study of algorithms using artificial intelligence for optimization in cloud · Method for power efficient virtual machine placement using neural network in cloud · Method for task scheduling using metaheuristic algorithms. · A study of machine learning and deep learning inspired resource allocation algorithm for cloud in fault aware environment. This book aims to create a research interest & motivation for graduates degree or post-graduates. It aims to present a study on optimization algorithms in cloud for researchers to provide them with a glimpse of future of cloud computing in the era of artificial intelligence.



Stochastic Optimization For Large Scale Machine Learning


Stochastic Optimization For Large Scale Machine Learning
DOWNLOAD
Author : Vinod Kumar Chauhan
language : en
Publisher:
Release Date : 2021-11

Stochastic Optimization For Large Scale Machine Learning written by Vinod Kumar Chauhan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11 with Big data categories.


"Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning"--



Black Box Optimization Machine Learning And No Free Lunch Theorems


Black Box Optimization Machine Learning And No Free Lunch Theorems
DOWNLOAD
Author : Panos M. Pardalos
language : en
Publisher: Springer Nature
Release Date : 2021-05-27

Black Box Optimization Machine Learning And No Free Lunch Theorems written by Panos M. Pardalos and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-27 with Mathematics categories.


This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.



Reinforcement Learning And Stochastic Optimization


Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-15

Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Mathematics categories.


REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.



Algorithms For Optimization


Algorithms For Optimization
DOWNLOAD
Author : Mykel J. Kochenderfer
language : en
Publisher: MIT Press
Release Date : 2019-03-12

Algorithms For Optimization written by Mykel J. Kochenderfer and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Computers categories.


A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.



Machine Learning Under A Modern Optimization Lens


Machine Learning Under A Modern Optimization Lens
DOWNLOAD
Author : Dimitris Bertsimas
language : en
Publisher:
Release Date : 2019

Machine Learning Under A Modern Optimization Lens written by Dimitris Bertsimas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Machine learning categories.