[PDF] Order Structure And Topological Methods In Nonlinear Partial Differential Equations - eBooks Review

Order Structure And Topological Methods In Nonlinear Partial Differential Equations


Order Structure And Topological Methods In Nonlinear Partial Differential Equations
DOWNLOAD

Download Order Structure And Topological Methods In Nonlinear Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Order Structure And Topological Methods In Nonlinear Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Order Structure And Topological Methods In Nonlinear Partial Differential Equations


Order Structure And Topological Methods In Nonlinear Partial Differential Equations
DOWNLOAD
Author : Yihong Du
language : en
Publisher: World Scientific
Release Date : 2006

Order Structure And Topological Methods In Nonlinear Partial Differential Equations written by Yihong Du and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.



Order Structure And Topological Methods In Nonlinear Partial Differential Equations


Order Structure And Topological Methods In Nonlinear Partial Differential Equations
DOWNLOAD
Author : Yihong Du
language : en
Publisher:
Release Date : 2006

Order Structure And Topological Methods In Nonlinear Partial Differential Equations written by Yihong Du and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Differential equations, Nonlinear categories.




Order Structure And Topological Methods In Nonlinear Partial Differential Equations Vol 1 Maximum Principles And Applications


Order Structure And Topological Methods In Nonlinear Partial Differential Equations Vol 1 Maximum Principles And Applications
DOWNLOAD
Author : Yihong Du
language : en
Publisher: World Scientific
Release Date : 2006-01-12

Order Structure And Topological Methods In Nonlinear Partial Differential Equations Vol 1 Maximum Principles And Applications written by Yihong Du and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-12 with Mathematics categories.


The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.



Elliptic Equations An Introductory Course


Elliptic Equations An Introductory Course
DOWNLOAD
Author : Michel Chipot
language : en
Publisher: Springer Nature
Release Date : 2024-07-14

Elliptic Equations An Introductory Course written by Michel Chipot and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-14 with Mathematics categories.


The aim of this book is to introduce the reader to different topics of the theory of elliptic partial differential equations by avoiding technicalities and complicated refinements. Apart from the basic theory of equations in divergence form, it includes subjects as singular perturbations, homogenization, computations, asymptotic behavior of problems in cylinders, elliptic systems, nonlinear problems, regularity theory, Navier-Stokes systems, p-Laplace type operators, large solutions, and mountain pass techniques. Just a minimum on Sobolev spaces has been introduced and work on integration on the boundary has been carefully avoided to keep the reader attention focused on the beauty and variety of these issues. The chapters are relatively independent of each other and can be read or taught separately. Numerous results presented here are original, and have not been published elsewhere. The book will be of interest to graduate students and researchers specializing in partial differential equations.



Nonlinear Second Order Parabolic Equations


Nonlinear Second Order Parabolic Equations
DOWNLOAD
Author : Mingxin Wang
language : en
Publisher: CRC Press
Release Date : 2021-05-12

Nonlinear Second Order Parabolic Equations written by Mingxin Wang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-12 with Mathematics categories.


The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.



An Introduction To Lieb S Simplified Approach To The Bose Gas


An Introduction To Lieb S Simplified Approach To The Bose Gas
DOWNLOAD
Author : Ian Jauslin
language : en
Publisher: Springer Nature
Release Date : 2025-01-30

An Introduction To Lieb S Simplified Approach To The Bose Gas written by Ian Jauslin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-30 with Science categories.


This book explores Lieb's Simplified approach to the ground state of systems of interacting bosons. While extensive research has delved into the behavior of interacting bosons, persistent challenges, such as proving Bose-Einstein condensation, remain. Introduced by Lieb in 1963, the Simplified approach has been the object of renewed attention in recent years, revealing surprising and promising results. Notably, this approach provides ground state energy predictions that agree with many-body systems asymptotically at both low and high densities. It further predicts a condensate fraction and correlation function that agree with Bogolyubov theory at low densities, and numerical predictions match quantum Monte Carlo simulations across all densities. This suggests that Lieb's Simplified approach could serve as a potent tool for reimagining the study of interacting bosons. The book defines Lieb's Simplified approach, discusses its predictions, and presents known analytical and numerical results. It is designed for advanced students and young researchers working in the fields of mathematical physics, quantum many-body physics and Bose-Einstein condensates.



Introduction To Reaction Diffusion Equations


Introduction To Reaction Diffusion Equations
DOWNLOAD
Author : King-Yeung Lam
language : en
Publisher: Springer Nature
Release Date : 2022-12-01

Introduction To Reaction Diffusion Equations written by King-Yeung Lam and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-01 with Mathematics categories.


This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.



Nonlinear Partial Differential Equations


Nonlinear Partial Differential Equations
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 1980-01-01

Nonlinear Partial Differential Equations written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1980-01-01 with Mathematics categories.


Nonlinear Partial Differential Equations



Linear Second Order Elliptic Operators


Linear Second Order Elliptic Operators
DOWNLOAD
Author : Julian Lopez-gomez
language : en
Publisher: World Scientific Publishing Company
Release Date : 2013-04-24

Linear Second Order Elliptic Operators written by Julian Lopez-gomez and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-24 with Mathematics categories.


The main goal of the book is to provide a comprehensive and self-contained proof of the, relatively recent, theorem of characterization of the strong maximum principle due to Molina-Meyer and the author, published in Diff. Int. Eqns. in 1994, which was later refined by Amann and the author in a paper published in J. of Diff. Eqns. in 1998. Besides this characterization has been shown to be a pivotal result for the development of the modern theory of spatially heterogeneous nonlinear elliptic and parabolic problems; it has allowed us to update the classical theory on the maximum and minimum principles by providing with some extremely sharp refinements of the classical results of Hopf and Protter-Weinberger. By a celebrated result of Berestycki, Nirenberg and Varadhan, Comm. Pure Appl. Maths. in 1994, the characterization theorem is partially true under no regularity constraints on the support domain for Dirichlet boundary conditions.Instead of encyclopedic generality, this book pays special attention to completeness, clarity and transparency of its exposition so that it can be taught even at an advanced undergraduate level. Adopting this perspective, it is a textbook; however, it is simultaneously a research monograph about the maximum principle, as it brings together for the first time in the form of a book, the most paradigmatic classical results together with a series of recent fundamental results scattered in a number of independent papers by the author of this book and his collaborators.Chapters 3, 4, and 5 can be delivered as a classical undergraduate, or graduate, course in Hilbert space techniques for linear second order elliptic operators, and Chaps. 1 and 2 complete the classical results on the minimum principle covered by the paradigmatic textbook of Protter and Weinberger by incorporating some recent classification theorems of supersolutions by Walter, 1989, and the author, 2003. Consequently, these five chapters can be taught at an undergraduate, or graduate, level. Chapters 6 and 7 study the celebrated theorem of Krein-Rutman and infer from it the characterizations of the strong maximum principle of Molina-Meyer and Amann, in collaboration with the author, which have been incorporated to a textbook by the first time here, as well as the results of Chaps. 8 and 9, polishing some recent joint work of Cano-Casanova with the author. Consequently, the second half of the book consists of a more specialized monograph on the maximum principle and the underlying principal eigenvalues.



Recent Progress On Reaction Diffusion Systems And Viscosity Solutions


Recent Progress On Reaction Diffusion Systems And Viscosity Solutions
DOWNLOAD
Author : Yihong Du
language : en
Publisher: World Scientific
Release Date : 2009-03-12

Recent Progress On Reaction Diffusion Systems And Viscosity Solutions written by Yihong Du and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-12 with Mathematics categories.


This book consists of survey and research articles expanding on the theme of the “International Conference on Reaction-Diffusion Systems and Viscosity Solutions”, held at Providence University, Taiwan, during January 3-6, 2007. It is a carefully selected collection of articles representing the recent progress of some important areas of nonlinear partial differential equations. The book is aimed for researchers and postgraduate students who want to learn about or follow some of the current research topics in nonlinear partial differential equations. The contributors consist of international experts and some participants of the conference, including Nils Ackermann (Mexico), Chao-Nien Chen (Taiwan), Yihong Du (Australia), Alberto Farina (France), Hitoshi Ishii (Japan), N Ishimura (Japan), Shigeaki Koike (Japan), Chu-Pin Lo (Taiwan), Peter Polacik (USA), Kunimochi Sakamoto (Japan), Richard Tsai (USA), Mingxin Wang (China), Yoshio Yamada (Japan), Eiji Yanagida (Japan), and Xiao-Qiang Zhao (Canada).