[PDF] Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales - eBooks Review

Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales


Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales
DOWNLOAD

Download Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Dynamic Equations On Time Scales


Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-06-15

Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-15 with Language Arts & Disciplines categories.


The study of dynamic equations on a measure chain (time scale) goes back to its founder S. Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on measure chains can build bridges between continuous and discrete mathematics. Further, the study of measure chain theory has led to several important applications, e.g., in the study of insect population models, neural networks, heat transfer, and epidemic models. Key features of the book: * Introduction to measure chain theory; discussion of its usefulness in allowing for the simultaneous development of differential equations and difference equations without having to repeat analogous proofs * Many classical formulas or procedures for differential and difference equations cast in a new light * New analogues of many of the "special functions" studied * Examination of the properties of the "exponential function" on time scales, which can be defined and investigated using a particularly simple linear equation * Additional topics covered: self-adjoint equations, linear systems, higher order equations, dynamic inequalities, and symplectic dynamic systems * Clear, motivated exposition, beginning with preliminaries and progressing to more sophisticated text * Ample examples and exercises throughout the book * Solutions to selected problems Requiring only a first semester of calculus and linear algebra, Dynamic Equations on Time Scales may be considered as an interesting approach to differential equations via exposure to continuous and discrete analysis. This approach provides an early encounter with many applications in such areas as biology, physics, and engineering. Parts of the book may be used in a special topics seminar at the senior undergraduate or beginning graduate levels. Finally, the work may



Nonoscillation And Oscillation


Nonoscillation And Oscillation
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher:
Release Date : 2004

Nonoscillation And Oscillation written by Ravi P. Agarwal and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with categories.




Advances In Dynamic Equations On Time Scales


Advances In Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-12-06

Advances In Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-12-06 with Mathematics categories.


Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.



Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales


Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales
DOWNLOAD
Author : Ahmet Yantır
language : en
Publisher:
Release Date : 2004

Oscillation Theory For Second Order Differential Equations And Dynamic Equations On Time Scales written by Ahmet Yantır and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Differentiable dynamical systems categories.


This thesis provides the oscillation criteria for second order linear differential equations and dynamic equations on time scales. We establish the comparison theorems and oscillation criteria for selfadjoint and non-self adjoint equations and systems of first order ordinary differential equations. Then we prove the fundamental results concerning the dynamic equations: existence and uniqueness theorem and disconjugacy criteria.



Oscillation Theory For Difference And Functional Differential Equations


Oscillation Theory For Difference And Functional Differential Equations
DOWNLOAD
Author : R.P. Agarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Oscillation Theory For Difference And Functional Differential Equations written by R.P. Agarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.


This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.



Nonoscillation And Oscillation Theory For Functional Differential Equations


Nonoscillation And Oscillation Theory For Functional Differential Equations
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: CRC Press
Release Date : 2004-08-30

Nonoscillation And Oscillation Theory For Functional Differential Equations written by Ravi P. Agarwal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-08-30 with Mathematics categories.


This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq



Dynamic Equations On Time Scales


Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.



Functional Dynamic Equations On Time Scales


Functional Dynamic Equations On Time Scales
DOWNLOAD
Author : Svetlin G. Georgiev
language : en
Publisher: Springer
Release Date : 2019-05-03

Functional Dynamic Equations On Time Scales written by Svetlin G. Georgiev and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-03 with Mathematics categories.


This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.



Scaling Of Differential Equations


Scaling Of Differential Equations
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2016-06-15

Scaling Of Differential Equations written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-15 with Mathematics categories.


The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.



Ordinary Differential Equations And Dynamical Systems


Ordinary Differential Equations And Dynamical Systems
DOWNLOAD
Author : Gerald Teschl
language : en
Publisher: American Mathematical Society
Release Date : 2024-01-12

Ordinary Differential Equations And Dynamical Systems written by Gerald Teschl and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-12 with Mathematics categories.


This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.