Outlier Detection For Temporal Data

DOWNLOAD
Download Outlier Detection For Temporal Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Outlier Detection For Temporal Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Outlier Detection For Temporal Data
DOWNLOAD
Author : Manish Gupta
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2014-03-01
Outlier Detection For Temporal Data written by Manish Gupta and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-01 with Computers categories.
Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers.
Outlier Detection Techniques And Applications
DOWNLOAD
Author : N. N. R. Ranga Suri
language : en
Publisher: Springer
Release Date : 2019-01-10
Outlier Detection Techniques And Applications written by N. N. R. Ranga Suri and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-10 with Computers categories.
This book, drawing on recent literature, highlights several methodologies for the detection of outliers and explains how to apply them to solve several interesting real-life problems. The detection of objects that deviate from the norm in a data set is an essential task in data mining due to its significance in many contemporary applications. More specifically, the detection of fraud in e-commerce transactions and discovering anomalies in network data have become prominent tasks, given recent developments in the field of information and communication technologies and security. Accordingly, the book sheds light on specific state-of-the-art algorithmic approaches such as the community-based analysis of networks and characterization of temporal outliers present in dynamic networks. It offers a valuable resource for young researchers working in data mining, helping them understand the technical depth of the outlier detection problem and devise innovative solutions to address related challenges.
Outlier Analysis
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2016-12-10
Outlier Analysis written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-10 with Computers categories.
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Outlier Detection For Temporal Data
DOWNLOAD
Author : Manish Gupta
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Outlier Detection For Temporal Data written by Manish Gupta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.
Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers. Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies
Knowledge Discovery From Sensor Data
DOWNLOAD
Author : Auroop R. Ganguly
language : en
Publisher: CRC Press
Release Date : 2008-12-10
Knowledge Discovery From Sensor Data written by Auroop R. Ganguly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Business & Economics categories.
As sensors become ubiquitous, a set of broad requirements is beginning to emerge across high-priority applications including disaster preparedness and management, adaptability to climate change, national or homeland security, and the management of critical infrastructures. This book presents innovative solutions in offline data mining and real-time
Temporal Data Mining
DOWNLOAD
Author : Theophano Mitsa
language : en
Publisher: CRC Press
Release Date : 2010-03-10
Temporal Data Mining written by Theophano Mitsa and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-10 with Business & Economics categories.
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Machine Learning And Data Mining In Pattern Recognition
DOWNLOAD
Author : Petra Perner
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-07-21
Machine Learning And Data Mining In Pattern Recognition written by Petra Perner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-21 with Computers categories.
There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.
Outlier Ensembles
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2017-04-06
Outlier Ensembles written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-06 with Computers categories.
This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.
Modeling And Design Of Secure Internet Of Things
DOWNLOAD
Author : Charles A. Kamhoua
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-11
Modeling And Design Of Secure Internet Of Things written by Charles A. Kamhoua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-11 with Technology & Engineering categories.
An essential guide to the modeling and design techniques for securing systems that utilize the Internet of Things Modeling and Design of Secure Internet of Things offers a guide to the underlying foundations of modeling secure Internet of Things' (IoT) techniques. The contributors—noted experts on the topic—also include information on practical design issues that are relevant for application in the commercial and military domains. They also present several attack surfaces in IoT and secure solutions that need to be developed to reach their full potential. The book offers material on security analysis to help with in understanding and quantifying the impact of the new attack surfaces introduced by IoT deployments. The authors explore a wide range of themes including: modeling techniques to secure IoT, game theoretic models, cyber deception models, moving target defense models, adversarial machine learning models in military and commercial domains, and empirical validation of IoT platforms. This important book: Presents information on game-theory analysis of cyber deception Includes cutting-edge research finding such as IoT in the battlefield, advanced persistent threats, and intelligent and rapid honeynet generation Contains contributions from an international panel of experts Addresses design issues in developing secure IoT including secure SDN-based network orchestration, networked device identity management, multi-domain battlefield settings, and smart cities Written for researchers and experts in computer science and engineering, Modeling and Design of Secure Internet of Things contains expert contributions to provide the most recent modeling and design techniques for securing systems that utilize Internet of Things.
Advanced Analytics And Learning On Temporal Data
DOWNLOAD
Author : Vincent Lemaire
language : en
Publisher: Springer Nature
Release Date : 2020-01-22
Advanced Analytics And Learning On Temporal Data written by Vincent Lemaire and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-22 with Computers categories.
This book constitutes the refereed proceedings of the 4th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2019, held in Würzburg, Germany, in September 2019. The 7 full papers presented together with 9 poster papers were carefully reviewed and selected from 31 submissions. The papers cover topics such as temporal data clustering; classification of univariate and multivariate time series; early classification of temporal data; deep learning and learning representations for temporal data; modeling temporal dependencies; advanced forecasting and prediction models; space-temporal statistical analysis; functional data analysis methods; temporal data streams; interpretable time-series analysis methods; dimensionality reduction, sparsity, algorithmic complexity and big data challenge; and bio-informatics, medical, energy consumption, on temporal data.