[PDF] Pad Methods For Painlev Equations - eBooks Review

Pad Methods For Painlev Equations


Pad Methods For Painlev Equations
DOWNLOAD

Download Pad Methods For Painlev Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pad Methods For Painlev Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Pad Methods For Painlev Equations


Pad Methods For Painlev Equations
DOWNLOAD
Author : Hidehito Nagao
language : en
Publisher: Springer Nature
Release Date : 2021-09-01

Pad Methods For Painlev Equations written by Hidehito Nagao and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-01 with Science categories.


The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases. For a given function f(x), the Padé approximation/interpolation supplies the rational functions P(x), Q(x) as approximants such as f(x)~P(x)/Q(x). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by P(x) and f(x)Q(x). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including discrete cases has been conducted only recently. By this simple and easy procedure, one can simultaneously obtain various results such as the nonlinear evolution equation, its Lax pair, and their special solutions. In this way, the method is a convenient means of approaching the isomonodromic deformation equations.



The Isomonodromic Deformation Method In The Theory Of Painleve Equations


The Isomonodromic Deformation Method In The Theory Of Painleve Equations
DOWNLOAD
Author : Alexander R. Its
language : en
Publisher: Springer
Release Date : 2006-11-14

The Isomonodromic Deformation Method In The Theory Of Painleve Equations written by Alexander R. Its and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.




Asymptotic Methods For Wave And Quantum Problems


Asymptotic Methods For Wave And Quantum Problems
DOWNLOAD
Author : M. V. Karasev
language : en
Publisher: American Mathematical Soc.
Release Date : 2003

Asymptotic Methods For Wave And Quantum Problems written by M. V. Karasev and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper ``Quantization and Intrinsic Dynamics'' a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approximation method. It also explains a hidden dynamic geometry that arises when using these methods. Three other papers discuss applications of asymptotic methods to the construction of wave-type solutions of nonlinear PDE's, to the theory of semiclassical approximation (in particular, the Whitham method) for nonlinear second-order ordinary differential equations, and to the study of the Schrodinger type equations whose potential wells are sufficiently shallow that the discrete spectrum contains precisely one point. All the papers contain detailed references and are oriented not only to specialists in asymptotic methods, but also to a wider audience of researchers and graduate students working in partial differential equations and mathematical physics.



Painlev Transcendents


Painlev Transcendents
DOWNLOAD
Author : Athanassios S. Fokas
language : en
Publisher: American Mathematical Society
Release Date : 2023-11-20

Painlev Transcendents written by Athanassios S. Fokas and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-20 with Mathematics categories.


At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painlevé transcendents (i.e., the solutions of the Painlevé equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painlevé equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painlevé transcendents. This striking fact, apparently unknown to Painlevé and his contemporaries, is the key ingredient for the remarkable applicability of these “nonlinear special functions”. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painlevé functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painlevé equations and related areas.



The Painlev Handbook


The Painlev Handbook
DOWNLOAD
Author : Robert Conte
language : en
Publisher: Springer Nature
Release Date : 2020-11-07

The Painlev Handbook written by Robert Conte and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-07 with Science categories.


This book, now in its second edition, introduces the singularity analysis of differential and difference equations via the Painlevé test and shows how Painlevé analysis provides a powerful algorithmic approach to building explicit solutions to nonlinear ordinary and partial differential equations. It is illustrated with integrable equations such as the nonlinear Schrödinger equation, the Korteweg-de Vries equation, Hénon-Heiles type Hamiltonians, and numerous physically relevant examples such as the Kuramoto-Sivashinsky equation, the Kolmogorov-Petrovski-Piskunov equation, and mainly the cubic and quintic Ginzburg-Landau equations. Extensively revised, updated, and expanded, this new edition includes: recent insights from Nevanlinna theory and analysis on both the cubic and quintic Ginzburg-Landau equations; a close look at physical problems involving the sixth Painlevé function; and an overview of new results since the book’s original publication with special focus on finite difference equations. The book features tutorials, appendices, and comprehensive references, and will appeal to graduate students and researchers in both mathematics and the physical sciences.



Hamiltonian Methods In The Theory Of Solitons


Hamiltonian Methods In The Theory Of Solitons
DOWNLOAD
Author : Ludwig Faddeev
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-10

Hamiltonian Methods In The Theory Of Solitons written by Ludwig Faddeev and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-10 with Science categories.


This book presents the foundations of the inverse scattering method and its applications to the theory of solitons in such a form as we understand it in Leningrad. The concept of solitonwas introduced by Kruskal and Zabusky in 1965. A soliton (a solitary wave) is a localized particle-like solution of a nonlinear equation which describes excitations of finite energy and exhibits several characteristic features: propagation does not destroy the profile of a solitary wave; the interaction of several solitary waves amounts to their elastic scat tering, so that their total number and shape are preserved. Occasionally, the concept of the soliton is treated in a more general sense as a localized solu tion of finite energy. At present this concept is widely spread due to its universality and the abundance of applications in the analysis of various processes in nonlinear media. The inverse scattering method which is the mathematical basis of soliton theory has developed into a powerful tool of mathematical physics for studying nonlinear partial differential equations, almost as vigoraus as the Fourier transform. The book is based on the Hamiltonian interpretation of the method, hence the title. Methods of differential geometry and Hamiltonian formal ism in particular are very popular in modern mathematical physics. It is precisely the general Hamiltonian formalism that presents the inverse scat tering method in its most elegant form. Moreover, the Hamiltonian formal ism provides a link between classical and quantum mechanics.



Painlev Equations And Related Topics


Painlev Equations And Related Topics
DOWNLOAD
Author : Alexander D. Bruno
language : en
Publisher: Walter de Gruyter
Release Date : 2012-08-31

Painlev Equations And Related Topics written by Alexander D. Bruno and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-31 with Mathematics categories.


This is a proceedings of the international conference "Painlevé Equations and Related Topics" which was taking place at the Euler International Mathematical Institute, a branch of the Saint Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of Sciences, in Saint Petersburg on June 17 to 23, 2011. The survey articles discuss the following topics: General ordinary differential equations Painlevé equations and their generalizations Painlevé property Discrete Painlevé equations Properties of solutions of all mentioned above equations: – Asymptotic forms and asymptotic expansions – Connections of asymptotic forms of a solution near different points – Convergency and asymptotic character of a formal solution – New types of asymptotic forms and asymptotic expansions – Riemann-Hilbert problems – Isomonodromic deformations of linear systems – Symmetries and transformations of solutions – Algebraic solutions Reductions of PDE to Painlevé equations and their generalizations Ordinary Differential Equations systems equivalent to Painlevé equations and their generalizations Applications of the equations and the solutions



Painlev Transcendents


Painlev Transcendents
DOWNLOAD
Author : Decio Levi
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

Painlev Transcendents written by Decio Levi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Science categories.


The NATO Advanced Research Workshop "Painleve Transcendents, their Asymp totics and Physical Applications", held at the Alpine Inn in Sainte-Adele, near Montreal, September 2 -7, 1990, brought together a group of experts to discuss the topic and produce this volume. There were 41 participants from 14 countries and 27 lectures were presented, all included in this volume. The speakers presented reviews of topics to which they themselves have made important contributions and also re sults of new original research. The result is a volume which, though multiauthored, has the character of a monograph on a single topic. This is the theory of nonlinear ordinary differential equations, the solutions of which have no movable singularities, other than poles, and the extension of this theory to partial differential equations. For short we shall call such systems "equations with the Painleve property". The search for such equations was a very topical mathematical problem in the 19th century. Early work concentrated on first order differential equations. One of Painleve's important contributions in this field was to develop simple methods applicable to higher order equations. In particular these methods made possible a complete analysis of the equation ;; = f(y',y,x), where f is a rational function of y' and y, with coefficients that are analytic in x. The fundamental result due to Painleve (Acta Math.



The Painlev Handbook


The Painlev Handbook
DOWNLOAD
Author : Robert M. Conte
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-11-23

The Painlev Handbook written by Robert M. Conte and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-23 with Science categories.


Nonlinear differential or difference equations are encountered not only in mathematics, but also in many areas of physics (evolution equations, propagation of a signal in an optical fiber), chemistry (reaction-diffusion systems), and biology (competition of species). This book introduces the reader to methods allowing one to build explicit solutions to these equations. A prerequisite task is to investigate whether the chances of success are high or low, and this can be achieved without any a priori knowledge of the solutions, with a powerful algorithm presented in detail called the Painlevé test. If the equation under study passes the Painlevé test, the equation is presumed integrable. If on the contrary the test fails, the system is nonintegrable or even chaotic, but it may still be possible to find solutions. The examples chosen to illustrate these methods are mostly taken from physics. These include on the integrable side the nonlinear Schrödinger equation (continuous and discrete), the Korteweg-de Vries equation, the Hénon-Heiles Hamiltonians, on the nonintegrable side the complex Ginzburg-Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto-Sivashinsky equation (phase turbulence), the Kolmogorov-Petrovski-Piskunov equation (KPP, a reaction-diffusion model), the Lorenz model of atmospheric circulation and the Bianchi IX cosmological model. Written at a graduate level, the book contains tutorial text as well as detailed examples and the state of the art on some current research.



Algebraic And Geometric Methods In Mathematical Physics


Algebraic And Geometric Methods In Mathematical Physics
DOWNLOAD
Author : Anne Boutet de Monvel
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-01-31

Algebraic And Geometric Methods In Mathematical Physics written by Anne Boutet de Monvel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-01-31 with Science categories.


Proceedings of the Kaciveli Summer School, Crimea, Ukraine, 1993