Painleve Equations Through Symmetry

DOWNLOAD
Download Painleve Equations Through Symmetry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Painleve Equations Through Symmetry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Painleve Equations Through Symmetry
DOWNLOAD
Author : Masatoshi Noumi
language : en
Publisher: American Mathematical Soc.
Release Date : 2004-01-01
Painleve Equations Through Symmetry written by Masatoshi Noumi and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-01-01 with Mathematics categories.
This book is devoted to the symmetry of Painleve equations (especially those of types II and IV). The author studies families of transformations for several types of Painleve equationsQthe so-called Backlund transformationsQwhich transform solutions of a given Painleve equation to solutions of the same equation with a different set of parameters. It turns out that these symmetries can be interpreted in terms of root systems associated to affine Weyl groups. The author describes the remarkable combinatorial structures of these symmetries and shows how they are related to the theory of $\tau$-functions associated to integrable systems.
Symmetries And Integrability Of Difference Equations
DOWNLOAD
Author : Decio Levi
language : en
Publisher: Springer
Release Date : 2017-06-30
Symmetries And Integrability Of Difference Equations written by Decio Levi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-30 with Science categories.
This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.
Orthogonal Polynomials And Painlev Equations
DOWNLOAD
Author : Walter Van Assche
language : en
Publisher: Cambridge University Press
Release Date : 2018
Orthogonal Polynomials And Painlev Equations written by Walter Van Assche and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Mathematics categories.
There are a number of intriguing connections between Painlev equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painlev equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painlev transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painlev equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painlev equations.
Discrete Painlev Equations
DOWNLOAD
Author : Nalini Joshi
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-05-30
Discrete Painlev Equations written by Nalini Joshi and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Mathematics categories.
Discrete Painlevé equations are nonlinear difference equations, which arise from translations on crystallographic lattices. The deceptive simplicity of this statement hides immensely rich mathematical properties, connecting dynamical systems, algebraic geometry, Coxeter groups, topology, special functions theory, and mathematical physics. This book necessarily starts with introductory material to give the reader an accessible entry point to this vast subject matter. It is based on lectures that the author presented as principal lecturer at a Conference Board of Mathematical Sciences and National Science Foundation conference in Texas in 2016. Instead of technical theorems or complete proofs, the book relies on providing essential points of many arguments through explicit examples, with the hope that they will be useful for applied mathematicians and physicists.
Painlev Iii A Case Study In The Geometry Of Meromorphic Connections
DOWNLOAD
Author : Martin A. Guest
language : en
Publisher: Springer
Release Date : 2017-10-14
Painlev Iii A Case Study In The Geometry Of Meromorphic Connections written by Martin A. Guest and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-14 with Mathematics categories.
The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painlevé equations, and it offers new results on a particular Painlevé III equation of type PIII (D6), called PIII (0, 0, 4, −4), describing its relation to isomonodromic families of vector bundles on P1 with meromorphic connections. This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics. It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections. Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed. These provide examples of variations of TERP structures, which are related to tt∗ geometry and harmonic bundles. As an application, a new global picture o0 is given.
Painlev Transcendents
DOWNLOAD
Author : Athanassios S. Fokas
language : en
Publisher: American Mathematical Society
Release Date : 2023-11-20
Painlev Transcendents written by Athanassios S. Fokas and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-20 with Mathematics categories.
At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painlevé transcendents (i.e., the solutions of the Painlevé equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painlevé equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painlevé transcendents. This striking fact, apparently unknown to Painlevé and his contemporaries, is the key ingredient for the remarkable applicability of these “nonlinear special functions”. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painlevé functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painlevé equations and related areas.
The Painlev Property
DOWNLOAD
Author : Robert Conte
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
The Painlev Property written by Robert Conte and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.
Orthogonal Polynomials And Special Functions
DOWNLOAD
Author : Francisco Marcellàn
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-06-19
Orthogonal Polynomials And Special Functions written by Francisco Marcellàn and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-06-19 with Mathematics categories.
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Painlev Equations And Related Topics
DOWNLOAD
Author : Alexander D. Bruno
language : en
Publisher: Walter de Gruyter
Release Date : 2012-08-31
Painlev Equations And Related Topics written by Alexander D. Bruno and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-31 with Mathematics categories.
This is a proceedings of the international conference "Painlevé Equations and Related Topics" which was taking place at the Euler International Mathematical Institute, a branch of the Saint Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of Sciences, in Saint Petersburg on June 17 to 23, 2011. The survey articles discuss the following topics: General ordinary differential equations Painlevé equations and their generalizations Painlevé property Discrete Painlevé equations Properties of solutions of all mentioned above equations: – Asymptotic forms and asymptotic expansions – Connections of asymptotic forms of a solution near different points – Convergency and asymptotic character of a formal solution – New types of asymptotic forms and asymptotic expansions – Riemann-Hilbert problems – Isomonodromic deformations of linear systems – Symmetries and transformations of solutions – Algebraic solutions Reductions of PDE to Painlevé equations and their generalizations Ordinary Differential Equations systems equivalent to Painlevé equations and their generalizations Applications of the equations and the solutions
Side Iii Symmetries And Integrability Of Difference Equations
DOWNLOAD
Author : D. Levi
language : en
Publisher: American Mathematical Soc.
Release Date : 2000
Side Iii Symmetries And Integrability Of Difference Equations written by D. Levi and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
This volume contains the proceedings of the third meeting on "Symmetries and Integrability of Difference Equations" (SIDE III). The collection includes original results not published elsewhere and articles that give a rigorous but concise overview of their subject, and provides a complete description of the state of the art. Research in the field of difference equations-often referred to more generally as discrete systems-has undergone impressive development in recent years. In this collection the reader finds the most important new developments in a number of areas, including: Lie-type symmetries of differential-difference and difference-difference equations, integrability of fully discrete systems such as cellular automata, the connection between integrability and discrete geometry, the isomonodromy approach to discrete spectral problems and related discrete Painlevé equations, difference and q-difference equations and orthogonal polynomials, difference equations and quantum groups, and integrability and chaos in discrete-time dynamical systems. The proceedings will be valuable to mathematicians and theoretical physicists interested in the mathematical aspects and/or in the physical applications of discrete nonlinear dynamics, with special emphasis on the systems that can be integrated by analytic methods or at least admit special explicit solutions. The research in this volume will also be of interest to engineers working in discrete dynamics as well as to theoretical biologists and economists.