[PDF] Parallel Computing For Data Science - eBooks Review

Parallel Computing For Data Science


Parallel Computing For Data Science
DOWNLOAD

Download Parallel Computing For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallel Computing For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Scientific Parallel Computing


Scientific Parallel Computing
DOWNLOAD
Author : Larkin Ridgway Scott
language : en
Publisher: Princeton University Press
Release Date : 2021-03-09

Scientific Parallel Computing written by Larkin Ridgway Scott and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-09 with Computers categories.


What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book



Parallel Computing For Data Science


Parallel Computing For Data Science
DOWNLOAD
Author : Norman Matloff
language : en
Publisher: CRC Press
Release Date : 2015-06-04

Parallel Computing For Data Science written by Norman Matloff and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-04 with Computers categories.


This is one of the first parallel computing books to focus exclusively on parallel data structures, algorithms, software tools, and applications in data science. The book prepares readers to write effective parallel code in various languages and learn more about different R packages and other tools. It covers the classic n observations, p variables matrix format and common data structures. Many examples illustrate the range of issues encountered in parallel programming.



Programming Models For Parallel Computing


Programming Models For Parallel Computing
DOWNLOAD
Author : Pavan Balaji
language : en
Publisher: MIT Press
Release Date : 2015-11-06

Programming Models For Parallel Computing written by Pavan Balaji and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-06 with Computers categories.


An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng



Deep Learning And Parallel Computing Environment For Bioengineering Systems


Deep Learning And Parallel Computing Environment For Bioengineering Systems
DOWNLOAD
Author : Arun Kumar Sangaiah
language : en
Publisher: Academic Press
Release Date : 2019-07-26

Deep Learning And Parallel Computing Environment For Bioengineering Systems written by Arun Kumar Sangaiah and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-26 with Technology & Engineering categories.


Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data



R Programming For Data Science


R Programming For Data Science
DOWNLOAD
Author : Roger D. Peng
language : en
Publisher:
Release Date : 2012-04-19

R Programming For Data Science written by Roger D. Peng and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-19 with R (Computer program language) categories.


Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox.



Data Science With Python And Dask


Data Science With Python And Dask
DOWNLOAD
Author : Jesse Daniel
language : en
Publisher: Simon and Schuster
Release Date : 2019-07-08

Data Science With Python And Dask written by Jesse Daniel and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-08 with Computers categories.


Summary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's inside Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask



Parallel Processing For Scientific Computing


Parallel Processing For Scientific Computing
DOWNLOAD
Author : Michael A. Heroux
language : en
Publisher: SIAM
Release Date : 2006-01-01

Parallel Processing For Scientific Computing written by Michael A. Heroux and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Computers categories.


Scientific computing has often been called the third approach to scientific discovery, emerging as a peer to experimentation and theory. Historically, the synergy between experimentation and theory has been well understood: experiments give insight into possible theories, theories inspire experiments, experiments reinforce or invalidate theories, and so on. As scientific computing has evolved to produce results that meet or exceed the quality of experimental and theoretical results, it has become indispensable.Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering. This edited volume serves as an up-to-date reference for researchers and application developers on the state of the art in scientific computing. It also serves as an excellent overview and introduction, especially for graduate and senior-level undergraduate students interested in computational modeling and simulation and related computer science and applied mathematics aspects.Contents List of Figures; List of Tables; Preface; Chapter 1: Frontiers of Scientific Computing: An Overview; Part I: Performance Modeling, Analysis and Optimization. Chapter 2: Performance Analysis: From Art to Science; Chapter 3: Approaches to Architecture-Aware Parallel Scientific Computation; Chapter 4: Achieving High Performance on the BlueGene/L Supercomputer; Chapter 5: Performance Evaluation and Modeling of Ultra-Scale Systems; Part II: Parallel Algorithms and Enabling Technologies. Chapter 6: Partitioning and Load Balancing; Chapter 7: Combinatorial Parallel and Scientific Computing; Chapter 8: Parallel Adaptive Mesh Refinement; Chapter 9: Parallel Sparse Solvers, Preconditioners, and Their Applications; Chapter 10: A Survey of Parallelization Techniques for Multigrid Solvers; Chapter 11: Fault Tolerance in Large-Scale Scientific Computing; Part III: Tools and Frameworks for Parallel Applications. Chapter 12: Parallel Tools and Environments: A Survey; Chapter 13: Parallel Linear Algebra Software; Chapter 14: High-Performance Component Software Systems; Chapter 15: Integrating Component-Based Scientific Computing Software; Part IV: Applications of Parallel Computing. Chapter 16: Parallel Algorithms for PDE-Constrained Optimization; Chapter 17: Massively Parallel Mixed-Integer Programming; Chapter 18: Parallel Methods and Software for Multicomponent Simulations; Chapter 19: Parallel Computational Biology; Chapter 20: Opportunities and Challenges for Parallel Computing in Science and Engineering; Index.



Parallel Scientific Computing In C And Mpi


Parallel Scientific Computing In C And Mpi
DOWNLOAD
Author : George Karniadakis
language : en
Publisher: Cambridge University Press
Release Date : 2003-06-16

Parallel Scientific Computing In C And Mpi written by George Karniadakis and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-16 with Computers categories.


Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.



Introduction To Parallel Programming


Introduction To Parallel Programming
DOWNLOAD
Author : Subodh Kumar
language : en
Publisher: Cambridge University Press
Release Date : 2023-01-05

Introduction To Parallel Programming written by Subodh Kumar and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-05 with Computers categories.


In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.



Parallel And High Performance Computing


Parallel And High Performance Computing
DOWNLOAD
Author : Robert Robey
language : en
Publisher: Simon and Schuster
Release Date : 2021-08-24

Parallel And High Performance Computing written by Robert Robey and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-24 with Computers categories.


Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code