Parallel Python With Dask

DOWNLOAD
Download Parallel Python With Dask PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallel Python With Dask book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Parallel Python With Dask
DOWNLOAD
Author : Tim Peters
language : en
Publisher: GitforGits
Release Date : 2023-10-19
Parallel Python With Dask written by Tim Peters and has been published by GitforGits this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-19 with Computers categories.
Unlock the Power of Parallel Python with Dask: A Perfect Learning Guide for Aspiring Data Scientists Dask has revolutionized parallel computing for Python, empowering data scientists to accelerate their workflows. This comprehensive guide unravels the intricacies of Dask to help you harness its capabilities for machine learning and data analysis. Across 10 chapters, you'll master Dask's fundamentals, architecture, and integration with Python's scientific computing ecosystem. Step-by-step tutorials demonstrate parallel mapping, task scheduling, and leveraging Dask arrays for NumPy workloads. You'll discover how Dask seamlessly scales Pandas, Scikit-Learn, PyTorch, and other libraries for large datasets. Dedicated chapters explore scaling regression, classification, hyperparameter tuning, feature engineering, and more with clear examples. You'll also learn to tap into the power of GPUs with Dask, RAPIDS, and Google JAX for orders of magnitude speedups. This book places special emphasis on practical use cases related to scalability and distributed computing. You'll learn Dask patterns for cluster computing, managing resources efficiently, and robust data pipelines. The advanced chapters on DaskML and deep learning showcase how to build scalable models with PyTorch and TensorFlow. With this book, you'll gain practical skills to: Accelerate Python workloads with parallel mapping and task scheduling Speed up NumPy, Pandas, Scikit-Learn, PyTorch, and other libraries Build scalable machine learning pipelines for large datasets Leverage GPUs efficiently via Dask, RAPIDS and JAX Manage Dask clusters and workflows for distributed computing Streamline deep learning models with DaskML and DL frameworks Packed with hands-on examples and expert insights, this book provides the complete toolkit to harness Dask's capabilities. It will empower Python programmers, data scientists, and machine learning engineers to achieve faster workflows and operationalize parallel computing. Table of Content Introduction to Dask Dask Fundamentals Batch Data Parallel Processing with Dask Distributed Systems and Dask Advanced Dask: APIs and Building Blocks Dask with Pandas Dask with Scikit-learn Dask and PyTorch Dask with GPUs Scaling Machine Learning Projects with Dask
Data Science With Python And Dask
DOWNLOAD
Author : Jesse Daniel
language : en
Publisher: Simon and Schuster
Release Date : 2019-07-08
Data Science With Python And Dask written by Jesse Daniel and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-08 with Computers categories.
Summary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's inside Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask
Python For Ai
DOWNLOAD
Author : Robert Johnson
language : en
Publisher: HiTeX Press
Release Date : 2024-10-23
Python For Ai written by Robert Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-23 with Computers categories.
"Python for AI: Applying Machine Learning in Everyday Projects" is a comprehensive guide designed for anyone keen to delve into the transformative world of artificial intelligence using the potent yet accessible Python programming language. This book meticulously covers essential AI concepts, offering readers a structured path from understanding basic Python syntax to implementing sophisticated machine learning models. With a blend of foundational theories and practical applications, each chapter deftly guides readers through relevant techniques and tools, such as TensorFlow, Keras, and scikit-learn, that are crucial for modern AI development. Whether you are a beginner taking your first steps into AI or someone with programming experience seeking to expand your skill set, this book ensures you are equipped with the knowledge needed to tackle real-world challenges. It goes beyond mere theory, providing insights into deploying and integrating AI models, handling large datasets, and effectively developing solutions applicable across various industries. By the end of this journey, readers will not only grasp the intricacies of AI projects but also gain the confidence to innovate and contribute significantly to the evolving landscape of artificial intelligence.
Python Data Analysis
DOWNLOAD
Author : Avinash Navlani
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-05
Python Data Analysis written by Avinash Navlani and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-05 with Computers categories.
Understand data analysis pipelines using machine learning algorithms and techniques with this practical guide Key FeaturesPrepare and clean your data to use it for exploratory analysis, data manipulation, and data wranglingDiscover supervised, unsupervised, probabilistic, and Bayesian machine learning methodsGet to grips with graph processing and sentiment analysisBook Description Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you'll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you'll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You'll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you'll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you'll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you'll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data. What you will learnExplore data science and its various process modelsPerform data manipulation using NumPy and pandas for aggregating, cleaning, and handling missing valuesCreate interactive visualizations using Matplotlib, Seaborn, and BokehRetrieve, process, and store data in a wide range of formatsUnderstand data preprocessing and feature engineering using pandas and scikit-learnPerform time series analysis and signal processing using sunspot cycle dataAnalyze textual data and image data to perform advanced analysisGet up to speed with parallel computing using DaskWho this book is for This book is for data analysts, business analysts, statisticians, and data scientists looking to learn how to use Python for data analysis. Students and academic faculties will also find this book useful for learning and teaching Python data analysis using a hands-on approach. A basic understanding of math and working knowledge of the Python programming language will help you get started with this book.
Mastering Python Concurrency And Parallelism Unlock The Secrets Of Expert Level Skills
DOWNLOAD
Author : Larry Jones
language : en
Publisher: Walzone Press
Release Date : 2025-03-05
Mastering Python Concurrency And Parallelism Unlock The Secrets Of Expert Level Skills written by Larry Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-05 with Computers categories.
Unlock the full potential of your Python programming with "Mastering Python Concurrency and Parallelism: Unlock the Secrets of Expert-Level Skills." This comprehensive guide is crafted for experienced developers ready to elevate their expertise in concurrent and parallel computing. Through detailed exploration of threading, asyncio, and multiprocessing, you'll gain the insights needed to optimize your software for today's multi-core processors, ensuring peak performance and efficiency in your applications. Navigate through the nuanced world of Python concurrency with expertly organized chapters covering essential concepts, real-world applications, and advanced techniques. From demystifying the Global Interpreter Lock (GIL) to designing sophisticated concurrent data structures, this book offers unparalleled clarity and practical knowledge. Each chapter builds on the previous one, providing a seamless learning curve that empowers you to master the intricacies of writing robust, scalable concurrent code. Whether you're developing high-demand web servers, crafting precise financial models, or engineering responsive IoT systems, this book equips you with the tools to succeed. Real-world case studies and best practices accentuate the theoretical, allowing you to apply concepts to your unique challenges. Redefine your development capabilities and achieve new heights in software performance with this essential resource for mastering concurrency in Python.
Applied Text Analysis With Python
DOWNLOAD
Author : Benjamin Bengfort
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-06-11
Applied Text Analysis With Python written by Benjamin Bengfort and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-11 with Computers categories.
From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity
Python For Data Analysis
DOWNLOAD
Author : Dr.Vidya Santosh Dhamdhere
language : en
Publisher: RK Publication
Release Date : 2024-07-25
Python For Data Analysis written by Dr.Vidya Santosh Dhamdhere and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-25 with Computers categories.
Python for Data Analysis the essential tools and techniques for data manipulation, cleaning, and analysis in Python. It emphasizes the use of libraries like pandas, NumPy, and Matplotlib to efficiently handle and visualize data. Ideal for analysts and aspiring data scientists, the book provides practical insights, examples, and workflows for handling real-world datasets. Whether for beginners or experienced professionals, it delivers a solid foundation in Python's data analysis ecosystem.
Scaling Python With Ray
DOWNLOAD
Author : Holden Karau
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-11-29
Scaling Python With Ray written by Holden Karau and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-29 with Computers categories.
Serverless computing enables developers to concentrate solely on their applications rather than worry about where they've been deployed. With the Ray general-purpose serverless implementation in Python, programmers and data scientists can hide servers, implement stateful applications, support direct communication between tasks, and access hardware accelerators. In this book, experienced software architecture practitioners Holden Karau and Boris Lublinsky show you how to scale existing Python applications and pipelines, allowing you to stay in the Python ecosystem while reducing single points of failure and manual scheduling. Scaling Python with Ray is ideal for software architects and developers eager to explore successful case studies and learn more about decision and measurement effectiveness. If your data processing or server application has grown beyond what a single computer can handle, this book is for you. You'll explore distributed processing (the pure Python implementation of serverless) and learn how to: Implement stateful applications with Ray actors Build workflow management in Ray Use Ray as a unified system for batch and stream processing Apply advanced data processing with Ray Build microservices with Ray Implement reliable Ray applications
Python Tools For Scientists
DOWNLOAD
Author : Lee Vaughan
language : en
Publisher: No Starch Press
Release Date : 2023-01-17
Python Tools For Scientists written by Lee Vaughan and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-17 with Computers categories.
An introduction to the Python programming language and its most popular tools for scientists, engineers, students, and anyone who wants to use Python for research, simulations, and collaboration. Python Tools for Scientists will introduce you to Python tools you can use in your scientific research, including Anaconda, Spyder, Jupyter Notebooks, JupyterLab, and numerous Python libraries. You’ll learn to use Python for tasks such as creating visualizations, representing geospatial information, simulating natural events, and manipulating numerical data. Once you’ve built an optimal programming environment with Anaconda, you’ll learn how to organize your projects and use interpreters, text editors, notebooks, and development environments to work with your code. Following the book’s fast-paced Python primer, you’ll tour a range of scientific tools and libraries like scikit-learn and seaborn that you can use to manipulate and visualize your data, or analyze it with machine learning algorithms. You’ll also learn how to: Create isolated projects in virtual environments, build interactive notebooks, test code in the Qt console, and use Spyder’s interactive development features Use Python’s built-in data types, write custom functions and classes, and document your code Represent data with the essential NumPy, Matplotlib, and pandas libraries Use Python plotting libraries like Plotly, HoloViews, and Datashader to handle large datasets and create 3D visualizations Regardless of your scientific field, Python Tools for Scientists will show you how to choose the best tools to meet your research and computational analysis needs.
Extending Power Bi With Python And R
DOWNLOAD
Author : Luca Zavarella
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-11-26
Extending Power Bi With Python And R written by Luca Zavarella and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-26 with Computers categories.
Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key FeaturesGet the most out of Python and R with Power BI by implementing non-trivial codeLeverage the toolset of Python and R chunks to inject scripts into your Power BI dashboardsImplement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BIBook Description Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learnDiscover best practices for using Python and R in Power BI productsUse Python and R to perform complex data manipulations in Power BIApply data anonymization and data pseudonymization in Power BILog data and load large datasets in Power BI using Python and REnrich your Power BI dashboards using external APIs and machine learning modelsExtract insights from your data using linear optimization and other algorithmsHandle outliers and missing values for multivariate and time-series dataCreate any visualization, as complex as you want, using R scriptsWho this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.