Partial Differential Equations Ii

DOWNLOAD
Download Partial Differential Equations Ii PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Partial Differential Equations Ii book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Partial Differential Equations Ii
DOWNLOAD
Author : Michael E. Taylor
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-02
Partial Differential Equations Ii written by Michael E. Taylor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-02 with Mathematics categories.
This second in the series of three volumes builds upon the basic theory of linear PDE given in volume 1, and pursues more advanced topics. Analytical tools introduced here include pseudodifferential operators, the functional analysis of self-adjoint operators, and Wiener measure. The book also develops basic differential geometrical concepts, centred about curvature. Topics covered include spectral theory of elliptic differential operators, the theory of scattering of waves by obstacles, index theory for Dirac operators, and Brownian motion and diffusion.
Partial Differential Equations I
DOWNLOAD
Author : Michael E. Taylor
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-29
Partial Differential Equations I written by Michael E. Taylor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-29 with Mathematics categories.
The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.
Partial Differential Equations 2
DOWNLOAD
Author : Friedrich Sauvigny
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-10-11
Partial Differential Equations 2 written by Friedrich Sauvigny and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-11 with Mathematics categories.
This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.
Partial Differential Equations Ii
DOWNLOAD
Author : Michael Taylor
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Partial Differential Equations Ii written by Michael Taylor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
Partial differential equations is a many-faceted subject. Created to describe the mechanical behavior of objects such as vibrating strings and blowing winds, it has developed into a body of material that interacts with many branches of math ematics, such as differential geometry, complex analysis, and harmonic analysis, as weil as a ubiquitous factor in the description and elucidation of problems in mathematical physics. This work is intended to provide a course of study of some of the major aspects of PDE. It is addressed to readers with a background in the basic introductory grad uate mathematics courses in American universities: elementary real and complex analysis, differential geometry, and measure theory. Chapter 1 provides background material on the theory of ordinary differential equations (ODE). This includes both very basic material-on topics such as the existence and uniqueness of solutions to ODE and explicit solutions to equations with constant coefficients and relations to linear algebra-and more sophisticated results-on flows generated by vector fields, connections with differential geom etry, the calculus of differential forms, stationary action principles in mechanics, and their relation to Hamiltonian systems. We discuss equations of relativistic motion as weIl as equations of c1assical Newtonian mechanics. There are also applications to topological results, such as degree theory, the Brouwer fixed-point theorem, and the Jordan-Brouwer separation theorem. In this chapter we also treat scalar first-order PDE, via Hamilton-Jacobi theory.
Partial Differential Equations Ii
DOWNLOAD
Author : Michael E. Taylor
language : en
Publisher:
Release Date : 2010-11-04
Partial Differential Equations Ii written by Michael E. Taylor and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-04 with categories.
An Introduction To Partial Differential Equations
DOWNLOAD
Author : Michael Renardy
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18
An Introduction To Partial Differential Equations written by Michael Renardy and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.
Partial differential equations are fundamental to the modeling of natural phenomena, arising in every field of science. Consequently, the desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians; it has inspired such diverse fields as complex function theory, functional analysis and algebraic topology. Like algebra, topology, and rational mechanics, partial differential equations are a core area of mathematics. This book aims to provide the background necessary to initiate work on a Ph.D. thesis in PDEs for beginning graduate students. Prerequisites include a truly advanced calculus course and basic complex variables. Lebesgue integration is needed only in Chapter 10, and the necessary tools from functional analysis are developed within the course. The book can be used to teach a variety of different courses. This new edition features new problems throughout and the problems have been rearranged in each section from simplest to most difficult. New examples have also been added. The material on Sobolev spaces has been rearranged and expanded. A new section on nonlinear variational problems with "Young-measure" solutions appears. The reference section has also been expanded.
Partial Differential Equations
DOWNLOAD
Author : Lawrence C. Evans
language : en
Publisher: American Mathematical Society
Release Date : 2022-03-22
Partial Differential Equations written by Lawrence C. Evans and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-22 with Mathematics categories.
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. … Evans' book is evidence of his mastering of the field and the clarity of presentation. —Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations … Every graduate student in analysis should read it. —David Jerison, MIT I usePartial Differential Equationsto prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's … I am very happy with the preparation it provides my students. —Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge … An outstanding reference for many aspects of the field. —Rafe Mazzeo, Stanford University
The Analysis Of Linear Partial Differential Operators I
DOWNLOAD
Author : Lars Hörmander
language : en
Publisher: Springer
Release Date : 1990-08-10
The Analysis Of Linear Partial Differential Operators I written by Lars Hörmander and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990-08-10 with Mathematics categories.
The main change in this edition is the inclusion of exercises with answers and hints. This is meant to emphasize that this volume has been written as a general course in modern analysis on a graduate student level and not only as the beginning of a specialized course in partial differen tial equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of gen eral interest; there are none to the last two chapters. Most of the exercises are just routine problems meant to give some familiarity with standard use of the tools introduced in the text. Others are extensions of the theory presented there. As a rule rather complete though brief solutions are then given in the answers and hints. To a large extent the exercises have been taken over from courses or examinations given by Anders Melin or myself at the University of Lund. I am grateful to Anders Melin for letting me use the problems originating from him and for numerous valuable comments on this collection. As in the revised printing of Volume II, a number of minor flaws have also been corrected in this edition. Many of these have been called to my attention by the Russian translators of the first edition, and I wish to thank them for our excellent collaboration.
Partial Differential Equations In Action
DOWNLOAD
Author : Sandro Salsa
language : en
Publisher: Springer
Release Date : 2015-04-24
Partial Differential Equations In Action written by Sandro Salsa and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-24 with Mathematics categories.
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Partial Differential Equations
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-13
Partial Differential Equations written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-13 with Mathematics categories.
This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.