[PDF] Pattern Recognition In Biology - eBooks Review

Pattern Recognition In Biology


Pattern Recognition In Biology
DOWNLOAD

Download Pattern Recognition In Biology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pattern Recognition In Biology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Pattern Recognition In Biology


Pattern Recognition In Biology
DOWNLOAD
Author : Marsha S. Corrigan
language : en
Publisher: Nova Publishers
Release Date : 2007

Pattern Recognition In Biology written by Marsha S. Corrigan and has been published by Nova Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


Pattern recognition is the research area that studies the operation and design of systems that recognise patterns in data. It encloses subdisciplines like discriminant analysis, feature extraction, error estimation, cluster analysis (together sometimes called statistical pattern recognition), grammatical inference and parsing (sometimes called syntactical pattern recognition). Important application areas are image analysis, character recognition, speech analysis, man and machine diagnostics, person identification and industrial inspection. This book presents leading-edge research from around the world.



Pattern Recognition In Computational Molecular Biology


Pattern Recognition In Computational Molecular Biology
DOWNLOAD
Author : Mourad Elloumi
language : en
Publisher: John Wiley & Sons
Release Date : 2015-12-29

Pattern Recognition In Computational Molecular Biology written by Mourad Elloumi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-29 with Technology & Engineering categories.


A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. Surveys the development of techniques and approaches on pattern recognition in biomolecular data Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.



Scalable Pattern Recognition Algorithms


Scalable Pattern Recognition Algorithms
DOWNLOAD
Author : Pradipta Maji
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-03-19

Scalable Pattern Recognition Algorithms written by Pradipta Maji and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-19 with Computers categories.


This book addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The text reviews both established and cutting-edge research, providing a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Features: integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.



Structural Syntactic And Statistical Pattern Recognition


Structural Syntactic And Statistical Pattern Recognition
DOWNLOAD
Author : Georgy Gimel ́farb
language : en
Publisher: Springer
Release Date : 2012-10-22

Structural Syntactic And Statistical Pattern Recognition written by Georgy Gimel ́farb and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-22 with Computers categories.


This volume constitutes the refereed proceedings of the Joint IAPR International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2012) and Statistical Techniques in Pattern Recognition (SPR 2012), held in Hiroshima, Japan, in November 2012 as a satellite event of the 21st International Conference on Pattern Recognition, ICPR 2012. The 80 revised full papers presented together with 1 invited paper and the Pierre Devijver award lecture were carefully reviewed and selected from more than 120 initial submissions. The papers are organized in topical sections on structural, syntactical, and statistical pattern recognition, graph and tree methods, randomized methods and image analysis, kernel methods in structural and syntactical pattern recognition, applications of structural and syntactical pattern recognition, clustering, learning, kernel methods in statistical pattern recognition, kernel methods in statistical pattern recognition, as well as applications of structural, syntactical, and statistical methods.



Pattern Recognition In Computational Molecular Biology


Pattern Recognition In Computational Molecular Biology
DOWNLOAD
Author : Mourad Elloumi
language : en
Publisher: John Wiley & Sons
Release Date : 2015-12-24

Pattern Recognition In Computational Molecular Biology written by Mourad Elloumi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-24 with Technology & Engineering categories.


A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. Surveys the development of techniques and approaches on pattern recognition in biomolecular data Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.



Pattern Recognition By Humans And Machines


Pattern Recognition By Humans And Machines
DOWNLOAD
Author : Eileen C. Schwab
language : en
Publisher: Academic Press
Release Date : 2013-09-11

Pattern Recognition By Humans And Machines written by Eileen C. Schwab and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-11 with Reference categories.


Pattern Recognition by Humans and Machines, Volume 1: Speech Perception covers perception from the perspectives of cognitive psychology, artificial intelligence, and brain theory. The book discusses on the research, theory, and the principal issues of speech perception; the auditory and phonetic coding of speech; and the role of the lexicon in speech perception. The text also describes the role of attention and active processing in speech perception; the suprasegmental in very large vocabulary word recognition; and the adaptive self-organization of serial order in behavior. The cognitive science and the study of cognition and language are also considered. Psychologists will find the book invaluable.



Pattern Recognition By Self Organizing Neural Networks


Pattern Recognition By Self Organizing Neural Networks
DOWNLOAD
Author : Gail A. Carpenter
language : en
Publisher: MIT Press
Release Date : 1991

Pattern Recognition By Self Organizing Neural Networks written by Gail A. Carpenter and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Computers categories.


Pattern Recognition by Self-Organizing Neural Networks presentsthe most recent advances in an area of research that is becoming vitally important in the fields ofcognitive science, neuroscience, artificial intelligence, and neural networks in general. The 19articles take up developments in competitive learning and computational maps, adaptive resonancetheory, and specialized architectures and biological connections. Introductorysurvey articles provide a framework for understanding the many models involved in various approachesto studying neural networks. These are followed in Part 2 by articles that form the foundation formodels of competitive learning and computational mapping, and recent articles by Kohonen, applyingthem to problems in speech recognition, and by Hecht-Nielsen, applying them to problems in designingadaptive lookup tables. Articles in Part 3 focus on adaptive resonance theory (ART) networks,selforganizing pattern recognition systems whose top-down template feedback signals guarantee theirstable learning in response to arbitrary sequences of input patterns. In Part 4, articles describeembedding ART modules into larger architectures and provide experimental evidence fromneurophysiology, event-related potentials, and psychology that support the prediction that ARTmechanisms exist in the brain. Contributors: J.-P. Banquet, G.A. Carpenter, S.Grossberg, R. Hecht-Nielsen, T. Kohonen, B. Kosko, T.W. Ryan, N.A. Schmajuk, W. Singer, D. Stork, C.von der Malsburg, C.L. Winter.



Artificial Neural Networks In Medicine And Biology


Artificial Neural Networks In Medicine And Biology
DOWNLOAD
Author : H. Malmgren
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-04-12

Artificial Neural Networks In Medicine And Biology written by H. Malmgren and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-04-12 with Computers categories.


This volume comprises a selection of papers presented at ANNIMAB-1, the first conference to focus specifically on the topics of ANNs in medicine and biology. It covers three main areas: The medical applications of ANNs, such as in diagnosis and outcome prediction, medical image analysis, and medical signal processing; The uses of ANNs in biology outside clinical medicine, such as in data analysis, in molecular biology, and in simulations of biological systems; The theoretical aspects of ANNs, examining recent developments in learning algorithms and the possible role of ANNs in the medical decision process. Summarising the state-of-the-art and analysing the relationship between ANN techniques and other available methods, it also points to possible future biological and medical uses of ANNs. Essential reading for all neural network theorists, it will also be of interest to biologists and physicians with an interest in modelling and advanced statistical techniques.



Syntactic And Structural Pattern Recognition


Syntactic And Structural Pattern Recognition
DOWNLOAD
Author : Horst Bunke
language : en
Publisher: World Scientific
Release Date : 1990

Syntactic And Structural Pattern Recognition written by Horst Bunke and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Computers categories.


This book is currently the only one on this subject containing both introductory material and advanced recent research results. It presents, at one end, fundamental concepts and notations developed in syntactic and structural pattern recognition and at the other, reports on the current state of the art with respect to both methodology and applications. In particular, it includes artificial intelligence related techniques, which are likely to become very important in future pattern recognition.The book consists of individual chapters written by different authors. The chapters are grouped into broader subject areas like “Syntactic Representation and Parsing”, “Structural Representation and Matching”, “Learning”, etc. Each chapter is a self-contained presentation of one particular topic. In order to keep the original flavor of each contribution, no efforts were undertaken to unify the different chapters with respect to notation. Naturally, the self-containedness of the individual chapters results in some redundancy. However, we believe that this handicap is compensated by the fact that each contribution can be read individually without prior study of the preceding chapters. A unification of the spectrum of material covered by the individual chapters is provided by the subject and author index included at the end of the book.



Analysis Of Biological Data


Analysis Of Biological Data
DOWNLOAD
Author : Sanghamitra Bandyopadhyay
language : en
Publisher: World Scientific
Release Date : 2007

Analysis Of Biological Data written by Sanghamitra Bandyopadhyay and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries.