Pemrograman Data Science Studi Kasus Klasifikasi Dan Prediksi Hepatitis C Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui

DOWNLOAD
Download Pemrograman Data Science Studi Kasus Klasifikasi Dan Prediksi Hepatitis C Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pemrograman Data Science Studi Kasus Klasifikasi Dan Prediksi Hepatitis C Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Pemrograman Data Science Studi Kasus Klasifikasi Dan Prediksi Hepatitis C Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : id
Publisher: BALIGE PUBLISHING
Release Date : 2021-10-18
Pemrograman Data Science Studi Kasus Klasifikasi Dan Prediksi Hepatitis C Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-18 with Computers categories.
Dataset yang dipakai pada buku ini berisi nilai-nilai laboratorium dari sejumlah donor darah dan pasien Hepatitis C dan nilai-nilai demografis seperti usia dan lainnya. Dataset diperoleh dari UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/HCV+data. Semua atribut kecuali Category dan Sex adalah numerikal. Atribut 1 sampai 4 mengacu pada data pasien dan atribut 5 sampai 14 mengacu pada data laboratorium: X (Patient ID/No.), Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis'), Age (in years), Sex (f,m), ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and PROT. Atribut target untuk klasifikasi adalah Category (2): blood donors vs. Hepatitis C (termasuk ('just' Hepatitis C, Fibrosis, Cirrhosis). Selanjutnya, pada buku ini Anda akan belajar menggunakan Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, dan sejumlah Pustaka lain untuk mengklasifikasi dan memprediksi Hepatitis C. Model-model yang digunakan adalah K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, LGBM classifier, XGB classifier, MLP classifier, dan ANN. Terakhir, Anda akan mengembangkan GUI menggunakan Qt Designer dan PyQt5 untuk ROC, distribusi fitur, keutamaan fitur, menampilkan batas-batas keputusan tiap model, diagram nilai-nilai prediksi versus nilai-nilai sebenarnya, matriks confusion, kurva rugi, kurva akurasi, kurva pembelajaran model, skalabilitas model, dan kinerja model.
Hepatitis C Classification And Prediction Using Scikit Learn Keras And Tensorflow With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-08-19
Hepatitis C Classification And Prediction Using Scikit Learn Keras And Tensorflow With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-19 with Computers categories.
In this comprehensive project focusing on Hepatitis C classification and prediction, the journey begins with a meticulous exploration of the dataset. Through Python, Scikit-Learn, Keras, and TensorFlow, the project aims to develop an effective model to predict Hepatitis C based on given features. The dataset's attributes are systematically examined, and their distributions are analyzed to uncover insights into potential correlations and patterns. The subsequent step involves categorizing the feature distributions. This phase sheds light on the underlying characteristics of each attribute, facilitating the understanding of their roles in influencing the target variable. This categorization lays the foundation for feature scaling and preprocessing, ensuring that the data is optimized for machine learning. The core of the project revolves around the development of machine learning models. Employing Scikit-Learn, various classification algorithms are applied, including K-Nearest Neighbors (KNN), Decision Trees, Random Forests, Naive Bayes, Gradient Boosting, AdaBoost, Light Gradient Boosting, Multi-Layer Perceptron, and XGBoost. The models are fine-tuned using Grid Search to optimize hyperparameters, enhancing their performance and generalization capability. Taking the project a step further, deep learning techniques are harnessed to tackle the Hepatitis C classification challenge. A key component is the construction of an Artificial Neural Network (ANN) using Keras and TensorFlow. This ANN leverages layers of interconnected nodes to learn complex patterns within the data. LSTM, FNN, RNN, DBN, and Autoencoders are also explored, offering a comprehensive understanding of deep learning's versatility. To evaluate the models' performances, an array of metrics are meticulously employed. Metrics such as accuracy, precision, recall, F1-score, and AUC-ROC are meticulously calculated. The significance of each metric is meticulously explained, underpinning the assessment of a model's true predictive power and its potential weaknesses. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. The culmination of the project involves the creation of a user-friendly Graphical User Interface (GUI) using PyQt. The GUI enables users to interact seamlessly with the models, facilitating data input, model selection, and prediction execution. A detailed description of the GUI's components, including buttons, checkboxes, and interactive plots, highlights its role in simplifying the entire classification process. In a comprehensive journey of exploration, experimentation, and analysis, this project effectively marries data science and machine learning. By thoroughly examining the dataset, engineering features, utilizing a diverse range of machine learning models, harnessing the capabilities of deep learning, evaluating performance metrics, and creating an intuitive GUI, the project encapsulates the multi-faceted nature of modern data-driven endeavors.
Analisis Dan Prediksi Stroke Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : id
Publisher: BALIGE PUBLISHING
Release Date : 2021-09-09
Analisis Dan Prediksi Stroke Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-09 with Computers categories.
Menurut Organisasi Kesehatan Dunia (WHO), stroke adalah penyebab kematian ke-2 secara global, yang bertanggung jawab atas sekitar 11% dari total kematian. Dataset yang digunakan pada penelitian ini berguna untuk memprediksi kemungkinan seorang pasien terkena stroke berdasarkan parameter masukan seperti jenis kelamin, usia, berbagai penyakit, dan status merokok. Setiap baris dalam data memberikan informasi yang relevan tentang pasien. Informasi tiap kolom: id: Pengenal unik; gender: "Male", "Female" atau "Other"; age: Usia pasien; hypertension: 0 jika pasien tidak memiliki hipertensi, 1 jika pasien memiliki hipertensi; heart_disease: 0 jika pasien tidak memiliki penyakit jantung, 1 jika pasien memiliki penyakit jantung; ever_married: "No" atau "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" atau "Self-employed"; Residence_type: "Rural" atau "Urban"; avg_glucose_level: Rata-rata kadar glukosa dalam darah; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" atau "Unknown"*; stroke: 1 jika pasien mengalami stroke atau 0 jika tidak. Selanjutnya, Anda akan belajar menggunakan Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, dan sejumlah Pustaka lain untuk menganalisa dan memprediksi stroke menggunakan dataset yang disediakan di Kaggle. Model-model yang digunakan adalah K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, LGBM classifier, XGB classifier, MLP classifier, dan CNN 1D. Terakhir, Anda akan mengembangkan GUI menggunakan Qt Designer dan PyQt5 untuk ROC, distribusi fitur, keutamaan fitur, menampilkan batas-batas keputusan tiap model, diagram nilai-nilai prediksi versus nilai-nilai sebenarnya, matriks confusion, rugi pelatihan, rugi akurasi, kurva pembelajaran model, skalabilitas model, dan kinerja model.
Pemrograman Data Science Dengan Python Gui Studi Kasus Dataset Diabetes Dan Kanker Payudara
DOWNLOAD
Author : Vivian Siahaan
language : id
Publisher: BALIGE PUBLISHING
Release Date : 2021-08-14
Pemrograman Data Science Dengan Python Gui Studi Kasus Dataset Diabetes Dan Kanker Payudara written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-14 with Computers categories.
Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Practical Data Science Programming for Medical Datasets Analysis and Prediction with Python GUI”. Anda dapat menemukannya di Google Books dan Amazon. Pada proyek pertama, Anda akan mempelajari cara menggunakan Scikit-Learn, SVM, NumPy, Pandas, dan library lainnya untuk melakukan cara memprediksi diabetes tahap awal menggunakan Early Stage Diabetes Risk Prediction Dataset yang disediakan di Kaggle. Dataset ini berisi data tanda dan gejala penderita diabetes atau pasien yang berpotensi mengidap diabetes. Dataset telah dikumpulkan dengan menggunakan kuesioner langsung dari pasien Rumah Sakit Sylhet Diabetes di Sylhet, Bangladesh dan disetujui oleh dokter. Dataset terdiri dari total 15 fitur dan satu variabel target bernama class. Pada proyek ini, Anda akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, dan confusion matrix. Pada proyek kedua, Anda akan belajar bagaimana menerapkan Scikit-Learn, NumPy, Pandas, dan sejumlah pustaka lain untuk menganalisa dan memprediksi kanker payudara menggunakan Breast Cancer Prediction Dataset yang disediakan di Kaggle. Di seluruh dunia, kanker payudara adalah jenis kanker yang paling umum pada wanita dan tertinggi kedua dalam hal angka kematian. Diagnosis kanker payudara dilakukan ketika ditemukan benjolan abnormal (dari pemeriksaan sendiri atau x-ray) atau setitik kecil dari kalsium yang terlihat (pada x-ray). Setelah benjolan yang mencurigakan ditemukan, dokter akan melakukan diagnosis untuk menentukan apakah itu kanker dan, jika ya, apakah sudah menyebar ke bagian tubuh lain. Dataset kanker payudara ini diperoleh dari University of Wisconsin Hospitals, Madison dari Dr. William H. Wolberg. Pada proyek ini, Anda juga akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan decision boundary, ROC, distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, dan confusion matrix.
Data Science Workshop Liver Disease Classification And Prediction Using Machine Learning And Deep Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-08-09
Data Science Workshop Liver Disease Classification And Prediction Using Machine Learning And Deep Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-09 with Computers categories.
In this project, Data Science Workshop focused on Liver Disease Classification and Prediction, we embarked on a comprehensive journey through various stages of data analysis, model development, and performance evaluation. The workshop aimed to utilize Python and its associated libraries to create a Graphical User Interface (GUI) that facilitates the classification and prediction of liver disease cases. Our exploration began with a thorough examination of the dataset. This entailed importing necessary libraries such as NumPy, Pandas, and Matplotlib for data manipulation, visualization, and preprocessing. The dataset, representing liver-related attributes, was read and its dimensions were checked to ensure data integrity. To gain a preliminary understanding, the dataset's initial rows and column information were displayed. We identified key features such as 'Age', 'Gender', and various biochemical attributes relevant to liver health. The dataset's structure, including data types and non-null counts, was inspected to identify any potential data quality issues. We detected that the 'Albumin_and_Globulin_Ratio' feature had a few missing values, which were subsequently filled with the median value. Our exploration extended to visualizing categorical distributions. Pie charts provided insights into the proportions of healthy and unhealthy liver cases among different gender categories. Stacked bar plots further delved into the connections between 'Total_Bilirubin' categories and the prevalence of liver disease, fostering a deeper understanding of these relationships. Transitioning to predictive modeling, we embarked on constructing machine learning models. Our arsenal included a range of algorithms such as Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting. The data was split into training and testing sets, and each model underwent rigorous evaluation using metrics like accuracy, precision, recall, F1-score, and ROC-AUC. Hyperparameter tuning played a pivotal role in model enhancement. We leveraged grid search and cross-validation techniques to identify the best combination of hyperparameters, optimizing model performance. Our focus shifted towards assessing the significance of each feature, using techniques such as feature importance from tree-based models. The workshop didn't halt at machine learning; it delved into deep learning as well. We implemented an Artificial Neural Network (ANN) using the Keras library. This powerful model demonstrated its ability to capture complex relationships within the data. With distinct layers, activation functions, and dropout layers to prevent overfitting, the ANN achieved impressive results in liver disease prediction. Our journey culminated with a comprehensive analysis of model performance. The metrics chosen for evaluation included accuracy, precision, recall, F1-score, and confusion matrix visualizations. These metrics provided a comprehensive view of the model's capability to correctly classify both healthy and unhealthy liver cases. In summary, the Data Science Workshop on Liver Disease Classification and Prediction was a holistic exploration into data preprocessing, feature categorization, machine learning, and deep learning techniques. The culmination of these efforts resulted in the creation of a Python GUI that empowers users to input patient attributes and receive predictions regarding liver health. Through this workshop, participants gained a well-rounded understanding of data science techniques and their application in the field of healthcare.