Periods In Quantum Field Theory And Arithmetic

DOWNLOAD
Download Periods In Quantum Field Theory And Arithmetic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Periods In Quantum Field Theory And Arithmetic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Periods In Quantum Field Theory And Arithmetic
DOWNLOAD
Author : José Ignacio Burgos Gil
language : en
Publisher: Springer Nature
Release Date : 2020-03-14
Periods In Quantum Field Theory And Arithmetic written by José Ignacio Burgos Gil and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-14 with Mathematics categories.
This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
Periods In Quantum Field Theory And Arithmetic
DOWNLOAD
Author : José Ignacio Burgos Gil
language : en
Publisher: Springer
Release Date : 2020-04-08
Periods In Quantum Field Theory And Arithmetic written by José Ignacio Burgos Gil and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-08 with Mathematics categories.
This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
Computation And Combinatorics In Dynamics Stochastics And Control
DOWNLOAD
Author : Elena Celledoni
language : en
Publisher: Springer
Release Date : 2019-01-13
Computation And Combinatorics In Dynamics Stochastics And Control written by Elena Celledoni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-13 with Mathematics categories.
The Abel Symposia volume at hand contains a collection of high-quality articles written by the world’s leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.
Low Dimensional Topology And Number Theory
DOWNLOAD
Author : Masanori Morishita
language : en
Publisher: Springer Nature
Release Date : 2025-03-02
Low Dimensional Topology And Number Theory written by Masanori Morishita and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-02 with Mathematics categories.
This book is the result of research initiatives formed during the workshop "Low Dimensional Topology and Number Theory XIII" at Kyushu University in 2022. It is also dedicated to the memory of Professor Toshie Takata, who has been a main figure of the session chairs for the series of annual workshops since 2009. The activity was aimed at understanding and deepening recent developments of lively and fruitful interactions between low-dimensional topology and number theory over the past decades. In this volume of proceedings, the reader will find research papers as well as survey articles, including open problems, at the interface between classical and quantum topology, and algebraic and analytic number theory, written by leading experts and active researchers in the respective fields. Topics include, among others, the strong slope conjecture; Kashiwara–Vergne Lie algebra; braids and fibered double branched covers of 3-manifolds; Temperley–Lieb–Jones category andconformal blocks; WRT invariants and false theta functions; the colored Jones polynomial of the figure-eight knot; potential functions and A-polynomials; l-adic Galois polylogarithms; Dijkgraaf–Witten invariants in Bloch groups; analogies between knots and primes in arithmetic topology; normalized Jones polynomials for rational links; Iwasawa main conjecture; Weber’s class number problem. The book provides a valuable resource for researchers and graduate students interested in topics related to both low-dimensional topology and number theory.
Geometric And Topological Methods For Quantum Field Theory
DOWNLOAD
Author : Hernan Ocampo
language : en
Publisher: Cambridge University Press
Release Date : 2010-04-29
Geometric And Topological Methods For Quantum Field Theory written by Hernan Ocampo and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-29 with Science categories.
Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.
Geometry And Invariance In Stochastic Dynamics
DOWNLOAD
Author : Stefania Ugolini
language : en
Publisher: Springer Nature
Release Date : 2022-02-09
Geometry And Invariance In Stochastic Dynamics written by Stefania Ugolini and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-09 with Mathematics categories.
This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications. The purpose of the present book is to present the state of the art of the studies on stochastic systems from this point of view, present some of the underlying fundamental ideas and methods involved, and to outline the main lines for future developments. The main focus is on bridging the gap between deterministic and stochastic approaches, with the goal of contributing to the elaboration of a unified theory that will have a great impact both from the theoretical point of view and the point of view of applications. The reader is a mathematician or a theoretical physicist. The main discipline is stochastic analysis with profound ideas coming from Mathematical Physics and Lie’s Group Geometry. While the audience consists essentially of academicians, the reader can also be a practitioner with Ph.D., who is interested in efficient stochastic modelling.
A Combinatorial Perspective On Quantum Field Theory
DOWNLOAD
Author : Karen Yeats
language : en
Publisher: Springer
Release Date : 2016-11-23
A Combinatorial Perspective On Quantum Field Theory written by Karen Yeats and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-23 with Science categories.
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author’s biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.
Algebra And Applications 2
DOWNLOAD
Author : Abdenacer Makhlouf
language : en
Publisher: John Wiley & Sons
Release Date : 2021-12-29
Algebra And Applications 2 written by Abdenacer Makhlouf and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-29 with Mathematics categories.
This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored. Algebra and Applications 2 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.
Motives Quantum Field Theory And Pseudodifferential Operators
DOWNLOAD
Author : Alan L. Carey
language : en
Publisher: American Mathematical Soc.
Release Date : 2010
Motives Quantum Field Theory And Pseudodifferential Operators written by Alan L. Carey and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
This volume contains articles related to the conference ``Motives, Quantum Field Theory, and Pseudodifferntial Operators'' held at Boston University in June 2008, with partial support from the Clay Mathematics Institute, Boston University, and the National Science Foundation. There are deep but only partially understood connections between the three conference fields, so this book is intended both to explain the known connections and to offer directions for further research. In keeping with the organization of the conference, this book contains introductory lectures on each of the conference themes and research articles on current topics in these fields. The introductory lectures are suitable for graduate students and new Ph.D.'s in both mathematics and theoretical physics, as well as for senior researchers, since few mathematicians are expert in any two of the conference areas. Among the topics discussed in the introductory lectures are the appearance of multiple zeta values both as periods of motives and in Feynman integral calculations in perturbative QFT, the use of Hopf algebra techniques for renormalization in QFT, and regularized traces of pseudodifferential operators. The motivic interpretation of multiple zeta values points to a fundamental link between motives and QFT, and there are strong parallels between regularized traces and Feynman integral techniques. The research articles cover a range of topics in areas related to the conference themes, including geometric, Hopf algebraic, analytic, motivic and computational aspects of quantum field theory and mirror symmetry. There is no unifying theory of the conference areas at present, so the research articles present the current state of the art pointing towards such a unification.
Noncommutative Cosmology
DOWNLOAD
Author : Matilde Marcolli
language : en
Publisher: World Scientific
Release Date : 2017-12-26
Noncommutative Cosmology written by Matilde Marcolli and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-26 with Science categories.
Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.