[PDF] Phrase Mining From Massive Text And Its Applications - eBooks Review

Phrase Mining From Massive Text And Its Applications


Phrase Mining From Massive Text And Its Applications
DOWNLOAD

Download Phrase Mining From Massive Text And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Phrase Mining From Massive Text And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Phrase Mining From Massive Text And Its Applications


Phrase Mining From Massive Text And Its Applications
DOWNLOAD
Author : Jialu Liu
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Phrase Mining From Massive Text And Its Applications written by Jialu Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


A lot of digital ink has been spilled on "big data" over the past few years. Most of this surge owes its origin to the various types of unstructured data in the wild, among which the proliferation of text-heavy data is particularly overwhelming, attributed to the daily use of web documents, business reviews, news, social posts, etc., by so many people worldwide.A core challenge presents itself: How can one efficiently and effectively turn massive, unstructured text into structured representation so as to further lay the foundation for many other downstream text mining applications? In this book, we investigated one promising paradigm for representing unstructured text, that is, through automatically identifying high-quality phrases from innumerable documents. In contrast to a list of frequent n-grams without proper filtering, users are often more interested in results based on variable-length phrases with certain semantics such as scientific concepts, organizations, slogans, and so on. We propose new principles and powerful methodologies to achieve this goal, from the scenario where a user can provide meaningful guidance to a fully automated setting through distant learning. This book also introduces applications enabled by the mined phrases and points out some promising research directions.



Proceedings Of The International Conference On Applications Of Machine Intelligence And Data Analytics Icamida 2022


Proceedings Of The International Conference On Applications Of Machine Intelligence And Data Analytics Icamida 2022
DOWNLOAD
Author : Sharvari Tamane
language : en
Publisher: Springer Nature
Release Date : 2023-05-01

Proceedings Of The International Conference On Applications Of Machine Intelligence And Data Analytics Icamida 2022 written by Sharvari Tamane and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-01 with Computers categories.


This is an open access book. As on date, huge volumes of data are being generated through sensors, satellites, and simulators. Modern research on data analytics and its applications reveal that several algorithms are being designed and developed to process these datasets, either through the use of sequential and parallel processes. In the current scenario of Industry 4.0, data analytics, artificial intelligence and machine learning are being used to support decisions in space and time. Further, the availability of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) have enabled to processing of these datasets. Some of the applications of Artificial Intelligence, Machine Learning and Data Analytics are in the domains of Agriculture, Climate Change, Disaster Prediction, Automation in Manufacturing, Intelligent Transportation Systems, Health Care, Retail, Stock Market, Fashion Design, etc. The international conference on Applications of Machine Intelligence and Data Analytics aims to bring together faculty members, researchers, scientists, and industry people on a common platform to exchange ideas, algorithms, knowledge based on processing hardware and their respective application programming interfaces (APIs).



Mining Structures Of Factual Knowledge From Text


Mining Structures Of Factual Knowledge From Text
DOWNLOAD
Author : Xiang Ren
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Mining Structures Of Factual Knowledge From Text written by Xiang Ren and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine structures from massive text data, without extensive human annotation and labeling. In this book, we investigate the principles and methodologies of mining structures of factual knowledge (e.g., entities and their relationships) from massive, unstructured text corpora. Departing from many existing structure extraction methods that have heavy reliance on human annotated data for model training, our effort-light approach leverages human-curated facts stored in external knowledge bases as distant supervision and exploits rich data redundancy in large text corpora for context understanding. This effort-light mining approach leads to a series of new principles and powerful methodologies for structuring text corpora, including (1) entity recognition, typing and synonym discovery, (2) entity relation extraction, and (3) open-domain attribute-valuemining and information extraction. This book introduces this new research frontier and points out some promising research directions.



Exploiting The Power Of Group Differences


Exploiting The Power Of Group Differences
DOWNLOAD
Author : Guozhu Dong
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Exploiting The Power Of Group Differences written by Guozhu Dong and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


This book presents pattern-based problem-solving methods for a variety of machine learning and data analysis problems. The methods are all based on techniques that exploit the power of group differences. They make use of group differences represented using emerging patterns (aka contrast patterns), which are patterns that match significantly different numbers of instances in different data groups. A large number of applications outside of the computing discipline are also included. Emerging patterns (EPs) are useful in many ways. EPs can be used as features, as simple classifiers, as subpopulation signatures/characterizations, and as triggering conditions for alerts. EPs can be used in gene ranking for complex diseases since they capture multi-factor interactions. The length of EPs can be used to detect anomalies, outliers, and novelties. Emerging/contrast pattern based methods for clustering analysis and outlier detection do not need distance metrics, avoiding pitfalls of the latter in exploratory analysis of high dimensional data. EP-based classifiers can achieve good accuracy even when the training datasets are tiny, making them useful for exploratory compound selection in drug design. EPs can serve as opportunities in opportunity-focused boosting and are useful for constructing powerful conditional ensembles. EP-based methods often produce interpretable models and results. In general, EPs are useful for classification, clustering, outlier detection, gene ranking for complex diseases, prediction model analysis and improvement, and so on. EPs are useful for many tasks because they represent group differences, which have extraordinary power. Moreover, EPs represent multi-factor interactions, whose effective handling is of vital importance and is a major challenge in many disciplines. Based on the results presented in this book, one can clearly say that patterns are useful, especially when they are linked to issues of interest. We believe that many effective ways to exploit group differences' power still remain to be discovered. Hopefully this book will inspire readers to discover such new ways, besides showing them existing ways, to solve various challenging problems.



Data Mining


Data Mining
DOWNLOAD
Author : Jiawei Han
language : en
Publisher: Morgan Kaufmann
Release Date : 2022-07-02

Data Mining written by Jiawei Han and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-02 with Computers categories.


Data Mining: Concepts and Techniques, Fourth Edition introduces concepts, principles, and methods for mining patterns, knowledge, and models from various kinds of data for diverse applications. Specifically, it delves into the processes for uncovering patterns and knowledge from massive collections of data, known as knowledge discovery from data, or KDD. It focuses on the feasibility, usefulness, effectiveness, and scalability of data mining techniques for large data sets. After an introduction to the concept of data mining, the authors explain the methods for preprocessing, characterizing, and warehousing data. They then partition the data mining methods into several major tasks, introducing concepts and methods for mining frequent patterns, associations, and correlations for large data sets; data classificcation and model construction; cluster analysis; and outlier detection. Concepts and methods for deep learning are systematically introduced as one chapter. Finally, the book covers the trends, applications, and research frontiers in data mining. - Presents a comprehensive new chapter on deep learning, including improving training of deep learning models, convolutional neural networks, recurrent neural networks, and graph neural networks - Addresses advanced topics in one dedicated chapter: data mining trends and research frontiers, including mining rich data types (text, spatiotemporal data, and graph/networks), data mining applications (such as sentiment analysis, truth discovery, and information propagattion), data mining methodologie and systems, and data mining and society - Provides a comprehensive, practical look at the concepts and techniques needed to get the most out of your data - Visit the author-hosted companion site, https://hanj.cs.illinois.edu/bk4/ for downloadable lecture slides and errata



Database Systems For Advanced Applications


Database Systems For Advanced Applications
DOWNLOAD
Author : Christian S. Jensen
language : en
Publisher: Springer Nature
Release Date : 2021-04-06

Database Systems For Advanced Applications written by Christian S. Jensen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-06 with Computers categories.


The three-volume set LNCS 12681-12683 constitutes the proceedings of the 26th International Conference on Database Systems for Advanced Applications, DASFAA 2021, held in Taipei, Taiwan, in April 2021. The total of 156 papers presented in this three-volume set was carefully reviewed and selected from 490 submissions. The topic areas for the selected papers include information retrieval, search and recommendation techniques; RDF, knowledge graphs, semantic web, and knowledge management; and spatial, temporal, sequence, and streaming data management, while the dominant keywords are network, recommendation, graph, learning, and model. These topic areas and keywords shed the light on the direction where the research in DASFAA is moving towards. Due to the Corona pandemic this event was held virtually.



Implementation Of Machine Learning Algorithms Using Control Flow And Dataflow Paradigms


Implementation Of Machine Learning Algorithms Using Control Flow And Dataflow Paradigms
DOWNLOAD
Author : Milutinović, Veljko
language : en
Publisher: IGI Global
Release Date : 2022-03-11

Implementation Of Machine Learning Algorithms Using Control Flow And Dataflow Paradigms written by Milutinović, Veljko and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-11 with Computers categories.


Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.



Correlation Clustering


Correlation Clustering
DOWNLOAD
Author : Francesco Bonchi
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Correlation Clustering written by Francesco Bonchi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters. In most of the variants of correlation clustering, the number of clusters is not a given parameter; instead, the optimal number of clusters is automatically determined. Correlation clustering is perhaps the most natural formulation of clustering: as it just needs a definition of similarity, its broad generality makes it applicable to a wide range of problems in different contexts, and, particularly, makes it naturally suitable to clustering structured objects for which feature vectors can be difficult to obtain. Despite its simplicity, generality, and wide applicability, correlation clustering has so far received much more attention from an algorithmic-theory perspective than from the data-mining community. The goal of this lecture is to show how correlation clustering can be a powerful addition to the toolkit of a data-mining researcher and practitioner, and to encourage further research in the area.



Natural Language Processing And Chinese Computing


Natural Language Processing And Chinese Computing
DOWNLOAD
Author : Lu Wang
language : en
Publisher: Springer Nature
Release Date : 2021-10-09

Natural Language Processing And Chinese Computing written by Lu Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-09 with Computers categories.


This two-volume set of LNAI 13028 and LNAI 13029 constitutes the refereed proceedings of the 10th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2021, held in Qingdao, China, in October 2021. The 66 full papers, 23 poster papers, and 27 workshop papers presented were carefully reviewed and selected from 446 submissions. They are organized in the following areas: Fundamentals of NLP; Machine Translation and Multilinguality; Machine Learning for NLP; Information Extraction and Knowledge Graph; Summarization and Generation; Question Answering; Dialogue Systems; Social Media and Sentiment Analysis; NLP Applications and Text Mining; and Multimodality and Explainability.



Detecting Fake News On Social Media


Detecting Fake News On Social Media
DOWNLOAD
Author : Kai Shu
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Detecting Fake News On Social Media written by Kai Shu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


In the past decade, social media has become increasingly popular for news consumption due to its easy access, fast dissemination, and low cost. However, social media also enables the wide propagation of "fake news," i.e., news with intentionally false information. Fake news on social media can have significant negative societal effects. Therefore, fake news detection on social media has recently become an emerging research area that is attracting tremendous attention. This book, from a data mining perspective, introduces the basic concepts and characteristics of fake news across disciplines, reviews representative fake news detection methods in a principled way, and illustrates challenging issues of fake news detection on social media. In particular, we discussed the value of news content and social context, and important extensions to handle early detection, weakly-supervised detection, and explainable detection. The concepts, algorithms, and methods described in this lecture can help harness the power of social media to build effective and intelligent fake news detection systems. This book is an accessible introduction to the study of detecting fake news on social media. It is an essential reading for students, researchers, and practitioners to understand, manage, and excel in this area. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, datasets, tools used in this book, and the source code of representative algorithms. The readers are encouraged to visit the book website for the latest information: http://dmml.asu.edu/dfn/