Planning With Markov Decision Processes

DOWNLOAD
Download Planning With Markov Decision Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Planning With Markov Decision Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Planning With Markov Decision Processes
DOWNLOAD
Author : Mausam
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2012
Planning With Markov Decision Processes written by Mausam and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
Provides a concise introduction to the use of Markov Decision Processes for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms.
Planning With Markov Decision Processes
DOWNLOAD
Author : Mausam Natarajan
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Planning With Markov Decision Processes written by Mausam Natarajan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.
Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment. This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems. Table of Contents: Introduction / MDPs / Fundamental Algorithms / Heuristic Search Algorithms / Symbolic Algorithms / Approximation Algorithms / Advanced Notes
Markov Decision Processes In Artificial Intelligence
DOWNLOAD
Author : Olivier Sigaud
language : en
Publisher: John Wiley & Sons
Release Date : 2013-03-04
Markov Decision Processes In Artificial Intelligence written by Olivier Sigaud and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-04 with Technology & Engineering categories.
Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.
Reinforcement Learning
DOWNLOAD
Author : Marco Wiering
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-03-05
Reinforcement Learning written by Marco Wiering and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-05 with Computers categories.
Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.
Handbook Of Healthcare Analytics
DOWNLOAD
Author : Tinglong Dai
language : en
Publisher: John Wiley & Sons
Release Date : 2018-10-16
Handbook Of Healthcare Analytics written by Tinglong Dai and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-16 with Business & Economics categories.
How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.
Handbook Of Markov Decision Processes
DOWNLOAD
Author : Eugene A. Feinberg
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Handbook Of Markov Decision Processes written by Eugene A. Feinberg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.
Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.
Operations Research And Health Care
DOWNLOAD
Author : Margaret L. Brandeau
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-09
Operations Research And Health Care written by Margaret L. Brandeau and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-09 with Medical categories.
In both rich and poor nations, public resources for health care are inadequate to meet demand. Policy makers and health care providers must determine how to provide the most effective health care to citizens using the limited resources that are available. This chapter describes current and future challenges in the delivery of health care, and outlines the role that operations research (OR) models can play in helping to solve those problems. The chapter concludes with an overview of this book – its intended audience, the areas covered, and a description of the subsequent chapters. KEY WORDS Health care delivery, Health care planning HEALTH CARE DELIVERY: PROBLEMS AND CHALLENGES 3 1.1 WORLDWIDE HEALTH: THE PAST 50 YEARS Human health has improved significantly in the last 50 years. In 1950, global life expectancy was 46 years [1]. That figure rose to 61 years by 1980 and to 67 years by 1998 [2]. Much of these gains occurred in low- and middle-income countries, and were due in large part to improved nutrition and sanitation, medical innovations, and improvements in public health infrastructure.
Constrained Markov Decision Processes
DOWNLOAD
Author : Eitan Altman
language : en
Publisher: CRC Press
Release Date : 1999-03-30
Constrained Markov Decision Processes written by Eitan Altman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-03-30 with Mathematics categories.
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other. The first part explains the theory for the finite state space. The author characterizes the set of achievable expected occupation measures as well as performance vectors, and identifies simple classes of policies among which optimal policies exist. This allows the reduction of the original dynamic into a linear program. A Lagranian approach is then used to derive the dual linear program using dynamic programming techniques. In the second part, these results are extended to the infinite state space and action spaces. The author provides two frameworks: the case where costs are bounded below and the contracting framework. The third part builds upon the results of the first two parts and examines asymptotical results of the convergence of both the value and the policies in the time horizon and in the discount factor. Finally, several state truncation algorithms that enable the approximation of the solution of the original control problem via finite linear programs are given.
Elicitation And Planning In Markov Decision Processes With Unknown Rewards
DOWNLOAD
Author : Pegah Alizadeh
language : en
Publisher:
Release Date : 2016
Elicitation And Planning In Markov Decision Processes With Unknown Rewards written by Pegah Alizadeh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.
Markov decision processes (MDPs) are models for solving sequential decision problemswhere a user interacts with the environment and adapts her policy by taking numericalreward signals into account. The solution of an MDP reduces to formulate the userbehavior in the environment with a policy function that specifies which action to choose ineach situation. In many real world decision problems, the users have various preferences,and therefore, the gain of actions on states are different and should be re-decoded foreach user. In this dissertation, we are interested in solving MDPs for users with differentpreferences.We use a model named Vector-valued MDP (VMDP) with vector rewards. We propose apropagation-search algorithm that allows to assign a vector-value function to each policyand identify each user with a preference vector on the existing set of preferences wherethe preference vector satisfies the user priorities. Since the user preference vector is notknown we present several methods for solving VMDPs while approximating the user'spreference vector.We introduce two algorithms that reduce the number of queries needed to find the optimalpolicy of a user: 1) A propagation-search algorithm, where we propagate a setof possible optimal policies for the given MDP without knowing the user's preferences.2) An interactive value iteration algorithm (IVI) on VMDPs, namely Advantage-basedValue Iteration (ABVI) algorithm that uses clustering and regrouping advantages. Wealso demonstrate how ABVI algorithm works properly for two different types of users:confident and uncertain.We finally work on a minimax regret approximation method as a method for findingthe optimal policy w.r.t the limited information about user's preferences. All possibleobjectives in the system are just bounded between two higher and lower bounds while thesystem is not aware of user's preferences among them. We propose an heuristic minimaxregret approximation method for solving MDPs with unknown rewards that is faster andless complex than the existing methods in the literature.
Markov Decision Processes With Applications To Finance
DOWNLOAD
Author : Nicole Bäuerle
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-06
Markov Decision Processes With Applications To Finance written by Nicole Bäuerle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-06 with Mathematics categories.
The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).