Plasmonic Optical Antennas For Enhanced Light Detection And Emission

DOWNLOAD
Download Plasmonic Optical Antennas For Enhanced Light Detection And Emission PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Plasmonic Optical Antennas For Enhanced Light Detection And Emission book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Plasmonic Optical Antennas For Enhanced Light Detection And Emission
DOWNLOAD
Author : Edward Simon Barnard
language : en
Publisher: Stanford University
Release Date : 2011
Plasmonic Optical Antennas For Enhanced Light Detection And Emission written by Edward Simon Barnard and has been published by Stanford University this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.
Antennas are used across a wide range of frequencies in the electromagnetic spectrum to concentrate wave energy into electronic circuits. The principles that govern the operation of conventional radio-frequency antennas can be extended to much higher frequencies and be applied to produce nano-metallic (i.e. plasmonic) antennas that act as "receivers" and "transmitters" for visible light. These traits make them excellent candidates for light trapping in solar cells, light concentration in sub-wavelength photodetectors, or even localized heating for cancer therapies. The unique optical properties of metals at visible frequencies make it difficult to apply traditional antenna design rules. Using full-field electromagnetic simulations and analytical antenna models, we developed new design rules for producing optical antennas with a desired set of optical properties. We then applied these design rules to create antennas that resonantly enhance absorption on thin silicon detectors as well as enhance emission of cathodoluminescence (CL). Through spatial and spectral mapping of both photocurrent and CL we clearly show the fundamental and higher-order resonant modes of these antennas. With CL we are also able to map the spatial distribution of these resonant modes with nanometer resolution. In addition to these specific demonstrated applications, the results of this work enable optical engineers to more easily design a myriad of plasmonic devices that employ optical antenna structures, including nanoscale photodetectors, light sources, sensors, and modulators.
Plasmonic Optical Antennas For Enhanced Light Detection And Emission
DOWNLOAD
Author : Edward Simon Barnard
language : en
Publisher:
Release Date : 2011
Plasmonic Optical Antennas For Enhanced Light Detection And Emission written by Edward Simon Barnard and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.
Antennas are used across a wide range of frequencies in the electromagnetic spectrum to concentrate wave energy into electronic circuits. The principles that govern the operation of conventional radio-frequency antennas can be extended to much higher frequencies and be applied to produce nano-metallic (i.e. plasmonic) antennas that act as "receivers" and "transmitters" for visible light. These traits make them excellent candidates for light trapping in solar cells, light concentration in sub-wavelength photodetectors, or even localized heating for cancer therapies. The unique optical properties of metals at visible frequencies make it difficult to apply traditional antenna design rules. Using full-field electromagnetic simulations and analytical antenna models, we developed new design rules for producing optical antennas with a desired set of optical properties. We then applied these design rules to create antennas that resonantly enhance absorption on thin silicon detectors as well as enhance emission of cathodoluminescence (CL). Through spatial and spectral mapping of both photocurrent and CL we clearly show the fundamental and higher-order resonant modes of these antennas. With CL we are also able to map the spatial distribution of these resonant modes with nanometer resolution. In addition to these specific demonstrated applications, the results of this work enable optical engineers to more easily design a myriad of plasmonic devices that employ optical antenna structures, including nanoscale photodetectors, light sources, sensors, and modulators.
Optical Antennas
DOWNLOAD
Author : Mario Agio
language : en
Publisher: Cambridge University Press
Release Date : 2013-01-03
Optical Antennas written by Mario Agio and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-03 with Science categories.
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.
Plasmonic Control Of Light Emission
DOWNLOAD
Author : Young Chul Jun
language : en
Publisher: Stanford University
Release Date : 2010
Plasmonic Control Of Light Emission written by Young Chul Jun and has been published by Stanford University this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.
Enhanced light-matter interactions in light-confining structures (such as optical cavities) have been extensively investigated for both fundamental studies and practical applications. Plasmonic nanostructures, which can confine and manipulate light down to ~1 nm scale, are becoming increasingly important. Many areas of optical physics and devices can benefit from such extreme light concentration and manipulation. For example, fluorescent molecule or quantum dot (QD) emission can be strongly modified and controlled via surface plasmon polariton (SPP) coupling. In this dissertation, we present our theoretical and experimental studies on QD emission in metal nanogap structures that can provide extreme field concentration, enhancing light-matter interactions significantly. We start with a theoretical analysis of dipole emission in metal-dielectric-metal (MDM) waveguide structures. We look at both infinite (i.e. planar) and finite thickness MDM structures. We find that both structures exhibit strong spontaneous emission enhancements due to the tight confinement of modes between two metallic plates and that light emission is dominated by gap SPP coupling. For planar structures we present analytical solutions for the enhanced dipole decay rate, while for finite thickness MDM structures (i.e. nanoslits) we present results from numerical simulations. Next, we present our experiments on the SPP coupling of CdSe/ZnS QD emission in metal nanoslits. First, we observed clear lifetime and polarization state changes of QD emission with slit width due to gap SPP excitation. Second, with optimized side grooves (i.e. combined slit-groove and hole-groove structures), we collimated QD emission vertically into a very narrow angle, achieving an unprecedented level of directionality control, and visualized it with confocal scanning microscopy. Third, by using two metal plates as electrodes, we dynamically modulated the QD emission intensity and wavelength with external voltage. Finally, we extend our dipole emission calculation to several slot waveguide structures. We consider light emission in metal slots, metal-oxide-Si slots, and Si slot waveguides. We find that large spontaneous emission enhancements can be obtained over a broad range of wavelengths and that light emission is strongly funneled into slot waveguide modes. These represent broadband waveguide QED (quantum electro-dynamics) systems, which have unique merits for on-chip light sources and quantum information processing. These theoretical and experimental studies show that the SPP coupling of light emission is a very promising way to control light emission properties and may find broad application in spectroscopy, sensing, optoelectronics, and integrated optics.
Nano Optics For Enhancing Light Matter Interactions On A Molecular Scale
DOWNLOAD
Author : Baldassare Di Bartolo
language : en
Publisher: Springer
Release Date : 2012-12-04
Nano Optics For Enhancing Light Matter Interactions On A Molecular Scale written by Baldassare Di Bartolo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-04 with Science categories.
This volume presents a considerable number of interrelated contributions dealing with the new scientific ability to shape and control matter and electromagnetic fields on a sub-wavelength scale. The topics range from the fundamental ones, such as photonic metamateriials, plasmonics and sub-wavelength resolution to the more applicative, such as detection of single molecules, tomography on a micro-chip, fluorescence spectroscopy of biological systems, coherent control of biomolecules, biosensing of single proteins, terahertz spectroscopy of nanoparticles, rare earth ion-doped nanoparticles, random lasing, and nanocoax array architecture. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique. The contributions that appear in this volume were presented at a NATO Advanced Study Institute that was held in Erice, Italy, 3-18 July, 2011. The pedagogical aspect of the Institute is reflected in the topics presented in this volume.
Plasmonic Metal Nanostructures
DOWNLOAD
Author : Caixia Kan
language : en
Publisher: John Wiley & Sons
Release Date : 2024-02-13
Plasmonic Metal Nanostructures written by Caixia Kan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-13 with Technology & Engineering categories.
Plasmonic Metal Nanostructures Firsthand insights on a unique class of optoelectronic materials, covering technologies and applications in catalysis, sensing, and spectroscopy Plasmonic Metal Nanostructures provides broad coverage of the field of plasmonic technologies, from fundamentals to real-world applications such as highly sensitive spectroscopy and surface analysis techniques, summarizing the recent progress in plasmonics and their applications, with a focus on comprehensive and authoritative discussions of fabrication and characterization of the materials and their technological uses. The text also addresses current trends and advances in materials for plasmonics, such as nanostructures with novel shapes, composite nanostructures, and thin films. Starting with an overview of optical properties in materials from macro- to micro- and nanoscale, the text then moves on to discuss the fundamentals and dielectric modifications and advanced characterization methods of plasmonic nanostructures. Next, the latest development of metal nanostructures, such as core-shell and porous nanorods, nanowires for conductive films, new star-like nanoplates, different open nanostructures, and metal-semiconductor composite nanostructures, are explained in detail. The final portion of the text discusses applications of plasmonics for semiconductor optoelectronic devices, catalysis, sensing, SERS (surface-enhanced Raman Spectroscopy), and energy. Written by a highly qualified academic, Plasmonic Metal Nanostructures covers sample topics such as: Drude model for free electron gas, dielectric function of the free electron gas, surface plasmon polaritons, plasmon at metal-vacuum interface, and surface plasmon effects Drude-Lorentz model of metal nanoparticles, dielectric properties of complex nanostructures, optical property analysis of isolated nanoparticles, and numerical simulation of optical properties One-dimensional Au nanostructures, core-shell nanostructures, alloy Au/Ag nanorods, porous nanorods, and yolk-shell nanostructures FCC nanoplates, Au nanoplates with novel and well-defined shapes, metal decorated semiconductors, and optical properties of Au NBP-embedded nanostructures Providing complete coverage of plasmonic nanostructures and their applications in catalysis, sensing, spectroscopy, thin-film, analysis, optoelectronics, and a variety of other fields. The book about Plasmonic Metal Nanostructures is an essential resource for materials scientists, physics researchers and photochemists, along with catalytic, biomedical, and physical chemists.
Collective Plasmon Modes In Gain Media
DOWNLOAD
Author : V.A.G. Rivera
language : en
Publisher: Springer
Release Date : 2014-09-03
Collective Plasmon Modes In Gain Media written by V.A.G. Rivera and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-03 with Science categories.
This book represents the first detailed description, including both theoretical aspects and experimental methods, of the interaction of rare-earth ions with surface plasmon polariton from the point of view of collective plasmon-photon interactions via resonance modes (metal nanoparticles or nanostructure arrays) with quantum emitters (rare-earth ions). These interactions are of particular interest for applications to optical telecommunications, optical displays, and laser solid state technologies. Thus, our main goal is to give a more precise overview of the rapidly emerging field of nanophotonics by means of the study of the quantum properties of light interaction with matter at the nanoscale. In this way, collective plasmon-modes in a gain medium result from the interaction/coupling between a quantum emitter (created by rare-earth ions) with a metallic surface, inducing different effects such as the polarization of the metal electrons (so-called surface plasmon polariton - SPP), a field enhancement sustained by resonance coupling, or transfer of energy due to non-resonant coupling between the metallic nanostructure and the optically active surrounding medium. These effects counteract the absorption losses in the metal to enhance luminescence properties or even to control the polarization and phase of quantum emitters. The engineering of plasmons/SPP in gain media constitutes a new field in nanophotonics science with a tremendous technological potential in integrated optics/photonics at the nanoscale based on the control of quantum effects. This book will be an essential tool for scientists, engineers, and graduate and undergraduate students interested not only in a new frontier of fundamental physics, but also in the realization of nanophotonic devices for optical telecommunication.
Gold Nanoparticles For Physics Chemistry And Biology Second Edition
DOWNLOAD
Author : Catherine Louis
language : en
Publisher: World Scientific
Release Date : 2017-06-02
Gold Nanoparticles For Physics Chemistry And Biology Second Edition written by Catherine Louis and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-02 with Science categories.
Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications.World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.
21st Century Nanoscience A Handbook
DOWNLOAD
Author : Klaus D. Sattler
language : en
Publisher: CRC Press
Release Date : 2020-11-26
21st Century Nanoscience A Handbook written by Klaus D. Sattler and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-26 with Technology & Engineering categories.
21st Century Nanoscience - A Handbook: Nanophotonics, Nanoelectronics, and Nanoplasmonics (Volume 6) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This sixth volume in a ten-volume set covers nanophotonics, nanoelectronics, and nanoplasmonics. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.
Nano Optics
DOWNLOAD
Author : Sabu Thomas
language : en
Publisher: Elsevier
Release Date : 2020-07-06
Nano Optics written by Sabu Thomas and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-06 with Technology & Engineering categories.
Nano-Optics: Fundamentals, Experimental Methods, and Applications offers insights into the fundamentals and industrial applications of nanoscale light-emitting materials and their composites. This book serves as a reference, offering an overview of existing research, with a particular focus on industrial applications. Nano-optics is the branch of nanoscience and nanotechnology that deals with interaction of light with nanoscale objects. This book explores the materials, structure, manufacturing techniques, and industrial applications of nano-optics. The applications discussed include healthcare, communication, astronomy, and satellites. - Explains the major manufacturing techniques for light-emitting nanoscale materials - Discusses how nanoscale optical materials are being used in a range of industrial applications - Assesses the challenges of using nano-optics in a mass-production context