[PDF] Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data - eBooks Review

Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data


Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data
DOWNLOAD

Download Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Shrinkage Strategies In Analytics And Data Science


Shrinkage Strategies In Analytics And Data Science
DOWNLOAD
Author : Syed Ejaz Ahmed
language : en
Publisher:
Release Date : 2023

Shrinkage Strategies In Analytics And Data Science written by Syed Ejaz Ahmed and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with Estimation theory categories.


"This book presents some post-estimation and predictions strategies for the host of useful statistical models with applications in data science. It combines statistical learning and machine learning techniques in a unique and optimal way. It is well-known that machine learning methods are subject to many issues relating to bias, and consequently the mean squared error and prediction error may explode. For this reason, we suggest shrinkage strategies to control the bias by combining a submodel selected by a penalized method with a model with many features. Further, the suggested shrinkage methodology can be successfully implemented for high dimensional data analysis. Many researchers in statistics and medical sciences work with big data. They need to analyse this data through statistical modelling. Estimating the model parameters accurately is an important part of the data analysis. This book may be a repository for developing improve estimation strategies for statisticians. This book will help researchers and practitioners for their teaching and advanced research, and is an excellent textbook for advanced undergraduate and graduate courses involving shrinkage, statistical, and machine learning"--



Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data


Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data
DOWNLOAD
Author : Syed Ejaz Ahmed
language : en
Publisher: CRC Press
Release Date : 2023-05-25

Post Shrinkage Strategies In Statistical And Machine Learning For High Dimensional Data written by Syed Ejaz Ahmed and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-25 with Business & Economics categories.


This book presents some post-estimation and predictions strategies for the host of useful statistical models with applications in data science. It combines statistical learning and machine learning techniques in a unique and optimal way. It is well-known that machine learning methods are subject to many issues relating to bias, and consequently the mean squared error and prediction error may explode. For this reason, we suggest shrinkage strategies to control the bias by combining a submodel selected by a penalized method with a model with many features. Further, the suggested shrinkage methodology can be successfully implemented for high dimensional data analysis. Many researchers in statistics and medical sciences work with big data. They need to analyse this data through statistical modelling. Estimating the model parameters accurately is an important part of the data analysis. This book may be a repository for developing improve estimation strategies for statisticians. This book will help researchers and practitioners for their teaching and advanced research, and is an excellent textbook for advanced undergraduate and graduate courses involving shrinkage, statistical, and machine learning. The book succinctly reveals the bias inherited in machine learning method and successfully provides tools, tricks and tips to deal with the bias issue. Expertly sheds light on the fundamental reasoning for model selection and post estimation using shrinkage and related strategies. This presentation is fundamental, because shrinkage and other methods appropriate for model selection and estimation problems and there is a growing interest in this area to fill the gap between competitive strategies. Application of these strategies to real life data set from many walks of life. Analytical results are fully corroborated by numerical work and numerous worked examples are included in each chapter with numerous graphs for data visualization. The presentation and style of the book clearly makes it accessible to a broad audience. It offers rich, concise expositions of each strategy and clearly describes how to use each estimation strategy for the problem at hand. This book emphasizes that statistics/statisticians can play a dominant role in solving Big Data problems, and will put them on the precipice of scientific discovery. The book contributes novel methodologies for HDDA and will open a door for continued research in this hot area. The practical impact of the proposed work stems from wide applications. The developed computational packages will aid in analyzing a broad range of applications in many walks of life.



The Eighteenth International Conference On Management Science And Engineering Management


The Eighteenth International Conference On Management Science And Engineering Management
DOWNLOAD
Author : Jiuping Xu
language : en
Publisher: Springer Nature
Release Date : 2024-08-03

The Eighteenth International Conference On Management Science And Engineering Management written by Jiuping Xu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-03 with Computers categories.


The proceedings of the Eighteenth ICMSEM cover a wide range of areas including hot management issues in Engineering Science. It provides newest and frontier ideas and research achievements in the area of Management Science and Engineering Management to researchers and practitioners. The work contains both theoretical and practical studies of Management Science in the Computing Methodology, showing the advanced management concepts, computing technologies for decision making problems with large, uncertain and unstructured data. Research in this proceeding will show the new changes and challenges in the decision-making procedure as we have entered the big data era. Theoretical studies of this proceedings will present the new technologies of analysis, capture, search, sharing, storage, transfer, visualization, and privacy violations, as well as advances in integration of optimization, statistics and data mining. This proceeding also contains practical studies in the real decision-making scenarios when facing large, uncertain or unstructured data. The readers who are interested in related fields of can benefit from the proceedings for the new ideas and research direction.



A Nature Inspired Approach To Cryptology


A Nature Inspired Approach To Cryptology
DOWNLOAD
Author : Shishir Kumar Shandilya
language : en
Publisher: Springer Nature
Release Date : 2023-12-14

A Nature Inspired Approach To Cryptology written by Shishir Kumar Shandilya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-14 with Computers categories.


This book introduces nature-inspired algorithms and their applications to modern cryptography. It helps the readers to get into the field of nature-based approaches to solve complex cryptographic issues. This book provides a comprehensive view of nature-inspired research which could be applied in cryptography to strengthen security. It will also explore the novel research directives such as Clever algorithms and immune-based cyber resilience. New experimented nature-inspired approaches are having enough potential to make a huge impact in the field of cryptanalysis. This book gives a lucid introduction to this exciting new field and will promote further research in this domain. The book discusses the current landscape of cryptography and nature-inspired research and will be helpful to prospective students and professionals to explore further.



Statistical Methods At The Forefront Of Biomedical Advances


Statistical Methods At The Forefront Of Biomedical Advances
DOWNLOAD
Author : Yolanda Larriba
language : en
Publisher: Springer Nature
Release Date : 2023-08-09

Statistical Methods At The Forefront Of Biomedical Advances written by Yolanda Larriba and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-09 with Science categories.


This book presents novel statistics methods and reproducible software that helps to solve challenging problems in biomedicine. Specifically, it consists of a collection of 11 chapters contributed by some of the leading experts in the mathematical and statistical field which address new challenges in very disparate biomedical areas, such as genomics, cancer, circadian biology, microbiome, mental disorders, and more. The mathematical rigor is written in a user-friendly way to serve a general biomedical audience ranging from trainees or students to doctors, as well as scientific researchers, university departments, and PhD students.



Statistical Foundations Of Data Science


Statistical Foundations Of Data Science
DOWNLOAD
Author : Jianqing Fan
language : en
Publisher: CRC Press
Release Date : 2020-09-21

Statistical Foundations Of Data Science written by Jianqing Fan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Mathematics categories.


Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.



Multivariate Statistical Machine Learning Methods For Genomic Prediction


Multivariate Statistical Machine Learning Methods For Genomic Prediction
DOWNLOAD
Author : Osval Antonio Montesinos López
language : en
Publisher: Springer Nature
Release Date : 2022-02-14

Multivariate Statistical Machine Learning Methods For Genomic Prediction written by Osval Antonio Montesinos López and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-14 with Technology & Engineering categories.


This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.



Empirical Asset Pricing


Empirical Asset Pricing
DOWNLOAD
Author : Wayne Ferson
language : en
Publisher: MIT Press
Release Date : 2019-03-12

Empirical Asset Pricing written by Wayne Ferson and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Business & Economics categories.


An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Feature Engineering For Machine Learning And Data Analytics


Feature Engineering For Machine Learning And Data Analytics
DOWNLOAD
Author : Guozhu Dong
language : en
Publisher: CRC Press
Release Date : 2018-03-14

Feature Engineering For Machine Learning And Data Analytics written by Guozhu Dong and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-14 with Business & Economics categories.


Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.