Practical Data Analysis

DOWNLOAD
Download Practical Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Data Analysis
DOWNLOAD
Author : Hector Cuesta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-09-30
Practical Data Analysis written by Hector Cuesta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-30 with Computers categories.
A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark About This Book Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images A hands-on guide to understanding the nature of data and how to turn it into insight Who This Book Is For This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed. What You Will Learn Acquire, format, and visualize your data Build an image-similarity search engine Generate meaningful visualizations anyone can understand Get started with analyzing social network graphs Find out how to implement sentiment text analysis Install data analysis tools such as Pandas, MongoDB, and Apache Spark Get to grips with Apache Spark Implement machine learning algorithms such as classification or forecasting In Detail Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service. This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark. Style and approach This is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.
Practical Data Analysis
DOWNLOAD
Author : Hector Cuesta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2013-10-22
Practical Data Analysis written by Hector Cuesta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-22 with Computers categories.
Each chapter of the book quickly introduces a key ‘theme’ of Data Analysis, before immersing you in the practical aspects of each theme. You’ll learn quickly how to perform all aspects of Data Analysis.Practical Data Analysis is a book ideal for home and small business users who want to slice & dice the data they have on hand with minimum hassle.
Practical Data Analysis In Chemistry
DOWNLOAD
Author : Marcel Maeder
language : en
Publisher: Elsevier
Release Date : 2007-08-10
Practical Data Analysis In Chemistry written by Marcel Maeder and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-10 with Mathematics categories.
The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spreadsheet, enabling the reader to study the programs, play with them and observe what happens. Suitable data are generated for each example in short routines, this ensuring a clear understanding of the data structure. Chapter 2 includes a brief introduction to matrix algebra and its implementation in Matlab and Excel while Chapter 3 covers the theory required for the modelling of chemical processes. This is followed by an introduction to linear and non-linear least-squares fitting, each demonstrated with typical applications. Finally Chapter 5 comprises a collection of several methods for model-free data analyses.* Includes a solid introduction to the simulation of equilibrium processes and the simulation of complex kinetic processes.* Provides examples of routines that are easily adapted to the processes investigated by the reader* 'Model-based' analysis (linear and non-linear regression) and 'model-free' analysis are covered
Practical Data Analysis Cookbook
DOWNLOAD
Author : Tomasz Drabas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-04-29
Practical Data Analysis Cookbook written by Tomasz Drabas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-29 with Computers categories.
Over 60 practical recipes on data exploration and analysis About This Book Clean dirty data, extract accurate information, and explore the relationships between variables Forecast the output of an electric plant and the water flow of American rivers using pandas, NumPy, Statsmodels, and scikit-learn Find and extract the most important features from your dataset using the most efficient Python libraries Who This Book Is For If you are a beginner or intermediate-level professional who is looking to solve your day-to-day, analytical problems with Python, this book is for you. Even with no prior programming and data analytics experience, you will be able to finish each recipe and learn while doing so. What You Will Learn Read, clean, transform, and store your data usng Pandas and OpenRefine Understand your data and explore the relationships between variables using Pandas and D3.js Explore a variety of techniques to classify and cluster outbound marketing campaign calls data of a bank using Pandas, mlpy, NumPy, and Statsmodels Reduce the dimensionality of your dataset and extract the most important features with pandas, NumPy, and mlpy Predict the output of a power plant with regression models and forecast water flow of American rivers with time series methods using pandas, NumPy, Statsmodels, and scikit-learn Explore social interactions and identify fraudulent activities with graph theory concepts using NetworkX and Gephi Scrape Internet web pages using urlib and BeautifulSoup and get to know natural language processing techniques to classify movies ratings using NLTK Study simulation techniques in an example of a gas station with agent-based modeling In Detail Data analysis is the process of systematically applying statistical and logical techniques to describe and illustrate, condense and recap, and evaluate data. Its importance has been most visible in the sector of information and communication technologies. It is an employee asset in almost all economy sectors. This book provides a rich set of independent recipes that dive into the world of data analytics and modeling using a variety of approaches, tools, and algorithms. You will learn the basics of data handling and modeling, and will build your skills gradually toward more advanced topics such as simulations, raw text processing, social interactions analysis, and more. First, you will learn some easy-to-follow practical techniques on how to read, write, clean, reformat, explore, and understand your data—arguably the most time-consuming (and the most important) tasks for any data scientist. In the second section, different independent recipes delve into intermediate topics such as classification, clustering, predicting, and more. With the help of these easy-to-follow recipes, you will also learn techniques that can easily be expanded to solve other real-life problems such as building recommendation engines or predictive models. In the third section, you will explore more advanced topics: from the field of graph theory through natural language processing, discrete choice modeling to simulations. You will also get to expand your knowledge on identifying fraud origin with the help of a graph, scrape Internet websites, and classify movies based on their reviews. By the end of this book, you will be able to efficiently use the vast array of tools that the Python environment has to offer. Style and approach This hands-on recipe guide is divided into three sections that tackle and overcome real-world data modeling problems faced by data analysts/scientist in their everyday work. Each independent recipe is written in an easy-to-follow and step-by-step fashion.
Practical Data Analysis For Designed Experiments
DOWNLOAD
Author : Brian S. Yandell
language : en
Publisher: Routledge
Release Date : 2017-11-22
Practical Data Analysis For Designed Experiments written by Brian S. Yandell and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Mathematics categories.
Placing data in the context of the scientific discovery of knowledge through experimentation, Practical Data Analysis for Designed Experiments examines issues of comparing groups and sorting out factor effects and the consequences of imbalance and nesting, then works through more practical applications of the theory. Written in a modern and accessible manner, this book is a useful blend of theory and methods. Exercises included in the text are based on real experiments and real data.
A Practical Guide To Data Analysis For Physical Science Students
DOWNLOAD
Author : Louis Lyons
language : en
Publisher: Cambridge University Press
Release Date : 1991-11-29
A Practical Guide To Data Analysis For Physical Science Students written by Louis Lyons and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-11-29 with Science categories.
It is usually straightforward to calculate the result of a practical experiment in the laboratory. Estimating the accuracy of that result is often regarded by students as an obscure and tedious routine, involving much arithmetic. An estimate of the error is, however, an integral part of the presentation of the results of experiments. This textbook is intended for undergraduates who are carrying out laboratory experiments in the physical sciences for the first time. It is a practical guide on how to analyse data and estimate errors. The necessary formulas for performing calculations are given, and the ideas behind them are explained, although this is not a formal text on statistics. Specific examples are worked through step by step in the text. Emphasis is placed on the need to think about whether a calculated error is sensible. At first students should take this book with them to the laboratory, and the format is intended to make this convenient. The book will provide the necessary understanding of what is involved, should inspire confidence in the method of estimating errors, and enable numerical calculations without too much effort. The author's aim is to make practical classes more enjoyable. Students who use this book will be able to complete their calculations quickly and confidently, leaving time to appreciate the basic physical ideas involved in the experiments.
Practical Data Analysis Using Jupyter Notebook
DOWNLOAD
Author : Marc Wintjen
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-06-19
Practical Data Analysis Using Jupyter Notebook written by Marc Wintjen and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-19 with Computers categories.
Understand data analysis concepts to make accurate decisions based on data using Python programming and Jupyter Notebook Key FeaturesFind out how to use Python code to extract insights from data using real-world examplesWork with structured data and free text sources to answer questions and add value using dataPerform data analysis from scratch with the help of clear explanations for cleaning, transforming, and visualizing dataBook Description Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data. After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps. Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries. By the end of this book, you'll have gained the practical skills you need to analyze data with confidence. What you will learnUnderstand the importance of data literacy and how to communicate effectively using dataFind out how to use Python packages such as NumPy, pandas, Matplotlib, and the Natural Language Toolkit (NLTK) for data analysisWrangle data and create DataFrames using pandasProduce charts and data visualizations using time-series datasetsDiscover relationships and how to join data together using SQLUse NLP techniques to work with unstructured data to create sentiment analysis modelsDiscover patterns in real-world datasets that provide accurate insightsWho this book is for This book is for aspiring data analysts and data scientists looking for hands-on tutorials and real-world examples to understand data analysis concepts using SQL, Python, and Jupyter Notebook. Anyone looking to evolve their skills to become data-driven personally and professionally will also find this book useful. No prior knowledge of data analysis or programming is required to get started with this book.
Practical Data Analysis With Jmp Third Edition
DOWNLOAD
Author : Robert Carver
language : en
Publisher: SAS Institute
Release Date : 2019-10-18
Practical Data Analysis With Jmp Third Edition written by Robert Carver and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-18 with Computers categories.
Master the concepts and techniques of statistical analysis using JMP Practical Data Analysis with JMP, Third Edition, highlights the powerful interactive and visual approach of JMP to introduce readers to statistical thinking and data analysis. It helps you choose the best technique for the problem at hand by using real-world cases. It also illustrates best-practice workflow throughout the entire investigative cycle, from asking valuable questions through data acquisition, preparation, analysis, interpretation, and communication of findings. The book can stand on its own as a learning resource for professionals, or it can be used to supplement a college-level textbook for an introductory statistics course. It includes varied examples and problems using real sets of data. Each chapter typically starts with an important or interesting research question that an investigator has pursued. Reflecting the broad applicability of statistical reasoning, the problems come from a wide variety of disciplines, including engineering, life sciences, business, and economics, as well as international and historical examples. Application Scenarios at the end of each chapter challenge you to use your knowledge and skills with data sets that go beyond mere repetition of chapter examples. New in the third edition, chapters have been updated to demonstrate the enhanced capabilities of JMP, including projects, Graph Builder, Query Builder, and Formula Depot.
Practical Data Science For Information Professionals
DOWNLOAD
Author : David Stuart
language : en
Publisher: Facet Publishing
Release Date : 2020-07-24
Practical Data Science For Information Professionals written by David Stuart and has been published by Facet Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-24 with Language Arts & Disciplines categories.
Practical Data Science for Information Professionals provides an accessible introduction to a potentially complex field, providing readers with an overview of data science and a framework for its application. It provides detailed examples and analysis on real data sets to explore the basics of the subject in three principle areas: clustering and social network analysis; predictions and forecasts; and text analysis and mining. As well as highlighting a wealth of user-friendly data science tools, the book also includes some example code in two of the most popular programming languages (R and Python) to demonstrate the ease with which the information professional can move beyond the graphical user interface and achieve significant analysis with just a few lines of code. After reading, readers will understand: · the growing importance of data science · the role of the information professional in data science · some of the most important tools and methods that information professionals can use. Bringing together the growing importance of data science and the increasing role of information professionals in the management and use of data, Practical Data Science for Information Professionals will provide a practical introduction to the topic specifically designed for the information community. It will appeal to librarians and information professionals all around the world, from large academic libraries to small research libraries. By focusing on the application of open source software, it aims to reduce barriers for readers to use the lessons learned within.
Practical Data Analysis
DOWNLOAD
Author : Peter G. Bryant
language : en
Publisher: McGraw-Hill/Irwin
Release Date : 1998-11
Practical Data Analysis written by Peter G. Bryant and has been published by McGraw-Hill/Irwin this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-11 with Commercial statistics categories.
Practical Data Analysis: Case Studies in Business Statistics is a collection of 75 class tested case studies for use in introductory business statistics and general statistics. All cases are drawn from real situations in a broad range of business, economic, and social science settings and include small and large data sets for analysis by students. The philosophy behind the package is to let the cases and data drive or supplement the course. Doing so provides three important opportunities for students and instructors: useful computing experience, hands-on activity, which is more motivating than the traditional course format, and a sense of realism about the use of statistics.