[PDF] Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications - eBooks Review

Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications


Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications
DOWNLOAD

Download Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications


Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications
DOWNLOAD
Author : T. Mariprasath
language : en
Publisher: CRC Press
Release Date : 2024-12-23

Practical Guide To Machine Learning Nlp And Generative Ai Libraries Algorithms And Applications written by T. Mariprasath and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-23 with Computers categories.


This is an essential resource for beginners and experienced practitioners in machine learning. This comprehensive guide covers a broad spectrum of machine learning topics, starting with an in-depth exploration of popular machine learning libraries. Readers will gain a thorough understanding of Scikit-learn, TensorFlow, PyTorch, Keras, and other pivotal libraries like XGBoost, LightGBM, and CatBoost, which are integral for efficient model development and deployment. The book delves into various neural network architectures, providing readers with a solid foundation in understanding and applying these models. Beginning with the basics of the Perceptron and its application in digit classification, it progresses to more complex structures such as multilayer perceptrons for financial forecasting, radial basis function networks for air quality prediction, and convolutional neural networks (CNNs) for image classification. Additionally, the book covers recurrent neural networks (RNNs) and their variants like long short-term memory (LSTM) and gated recurrent units (GRUs), which are crucial for time-series analysis and sequential data applications. Supervised machine learning algorithms are meticulously explained, with practical examples to illustrate their application. The book covers logistic regression and its use in predicting sports outcomes, decision trees for plant classification, random forests for traffic prediction, and support vector machines for house price prediction. Gradient boosting machines and their applications in genomics, AdaBoost for bioinformatics data classification, and extreme gradient boosting (XGBoost) for churn prediction are also discussed, providing readers with a robust toolkit for various predictive tasks. Unsupervised learning algorithms are another significant focus of the book, introducing readers to techniques for uncovering hidden patterns in data. Hierarchical clustering for gene expression data analysis, principal component analysis (PCA) for climate predictions, and singular value decomposition (SVD) for signal denoising are thoroughly explained. The book also explores applications like robot navigation and network security, demonstrating the versatility of these techniques. Natural language processing (NLP) is comprehensively covered, highlighting its fundamental concepts and various applications. The book discusses the overview of NLP, its fundamental concepts, and its diverse applications such as chatbots, virtual assistants, clinical NLP applications, and social media analytics. Detailed sections on text pre-processing, syntactic analysis, machine translation, text classification, named entity recognition, and sentiment analysis equip readers with the knowledge to build sophisticated NLP models. The final chapters of the book explore generative AI, including generative adversarial networks (GANs) for image generation, variational autoencoders for vibrational encoder training, and autoregressive models for time series forecasting. It also delves into Markov chain models for text generation, Boltzmann machines for pattern recognition, and deep belief networks for financial forecasting. Special attention is given to the application of recurrent neural networks (RNNs) for generation tasks, such as wind power plant predictions and battery range prediction, showcasing the practical implementations of generative AI in various fields.



Practical Natural Language Processing


Practical Natural Language Processing
DOWNLOAD
Author : Sowmya Vajjala
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-17

Practical Natural Language Processing written by Sowmya Vajjala and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-17 with Computers categories.


Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective



Building Generative Ai Applications With Open Source Libraries


Building Generative Ai Applications With Open Source Libraries
DOWNLOAD
Author : Srikannan Balakrishnan
language : en
Publisher: BPB Publications
Release Date : 2025-03-27

Building Generative Ai Applications With Open Source Libraries written by Srikannan Balakrishnan and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-27 with Computers categories.


Generative AI is revolutionizing how we interact with technology, empowering us to create everything from compelling text to intricate code. This book is your practical guide to harnessing the power of open-source libraries, enabling you to build cutting-edge generative AI applications without needing extensive prior experience. In this book, you will journey from foundational concepts like natural language processing and transformers to the practical implementation of large language models. Learn to customize foundational models for specific industries, master text embeddings, and vector databases for efficient information retrieval, and build robust applications using LangChain. Explore open-source models like Llama and Falcon and leverage Hugging Face for seamless implementation. Discover how to deploy scalable AI solutions in the cloud while also understanding crucial aspects of data privacy and ethical AI usage. By the end of this book, you will be equipped with technical skills and practical knowledge, enabling you to confidently develop and deploy your own generative AI applications, leveraging the power of open-source tools to innovate and create. WHAT YOU WILL LEARN ● Building AI applications using LangChain and integrating RAG. ● Implementing large language models like Llama and Falcon. ● Utilizing Hugging Face for efficient model deployment. ● Developing scalable AI applications in cloud environments. ● Addressing ethical considerations and data privacy in AI. ● Practical application of vector databases for information retrieval. WHO THIS BOOK IS FOR This book is for aspiring tech professionals, students, and creative minds seeking to build generative AI applications. While a basic understanding of programming and an interest in AI are beneficial, no prior generative AI expertise is required. TABLE OF CONTENTS 1. Getting Started with Generative AI 2. Overview of Foundational Models 3. Text Processing and Embeddings Fundamentals 4. Understanding Vector Databases 5. Exploring LangChain for Generative AI 6. Implementation of LLMs 7. Implementation Using Hugging Face 8. Developments in Generative AI 9. Deployment of Applications 10. Generative AI for Good



Real World Natural Language Processing


Real World Natural Language Processing
DOWNLOAD
Author : Masato Hagiwara
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-14

Real World Natural Language Processing written by Masato Hagiwara and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.


Training computers to interpret and generate speech and text is a monumental challenge, and the payoff for reducing labor and improving human/computer interaction is huge! The field of Natural language processing (NLP) is advancing rapidly, with countless new tools and practices. This unique book offers an innovative collection of NLP techniques with applications in machine translation, voice assitants, text generation and more. "Real-world natural language processing" shows you how to build the practical NLP applications that are transforming the way humans and computers work together. Guided by clear explanations of each core NLP topic, you'll create many interesting applications including a sentiment analyzer and a chatbot. Along the way, you'll use Python and open source libraries like AllenNLP and HuggingFace Transformers to speed up your development process.



Hands On Machine Learning With Scikit Learn Keras And Tensorflow


Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-05

Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.


Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Palash Goyal
language : en
Publisher: Apress
Release Date : 2018-06-26

Deep Learning For Natural Language Processing written by Palash Goyal and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-26 with Computers categories.


Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.



Ai Revealed


Ai Revealed
DOWNLOAD
Author : Herman Erik
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2024-11-29

Ai Revealed written by Herman Erik and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-29 with Computers categories.


This book is a guide to navigating the evolving landscape of artificial intelligence. Designed for both novices and seasoned professionals it covers a broad range of topics from fundamental ideas to innovative advancements. Readers will investigate the principles of machine learning, explore the intricacies of deep learning architectures, and discover the applications of natural language processing and computer vision. With its concise explanations and useful examples, it gives readers the knowledge and abilities they need to confidently traverse the changing field of artificial intelligence. This text also looks at real-world case studies and important ethical issues, providing insightful information about the ethical ramifications and societal effects of technology. Features: Practical applications and case studies with a section on use cases across various industries, including healthcare, finance, transportation, and retail. Actionable steps for getting started with AI include how to set up an AI development environment, learning Python for AI applications, and utilizing popular AI libraries. Resources for further study including, AI online courses, AI communities and forums, and recommended books essentially, a roadmap for continuous learning.



Introduction To Natural Language Processing


Introduction To Natural Language Processing
DOWNLOAD
Author : Jacob Eisenstein
language : en
Publisher: MIT Press
Release Date : 2019-10-01

Introduction To Natural Language Processing written by Jacob Eisenstein and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-01 with Computers categories.


A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.



Artificial Intelligence With Python


Artificial Intelligence With Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-01-27

Artificial Intelligence With Python written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-27 with Computers categories.


Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.



Applied Natural Language Processing In The Enterprise


Applied Natural Language Processing In The Enterprise
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-05-12

Applied Natural Language Processing In The Enterprise written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-12 with Computers categories.


NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production