Practical Linear Algebra For Data Science

DOWNLOAD
Download Practical Linear Algebra For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Linear Algebra For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Linear Algebra For Data Science
DOWNLOAD
Author : Mike X Cohen
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-09-06
Practical Linear Algebra For Data Science written by Mike X Cohen and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-06 with Computers categories.
If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis
Practical Linear Algebra For Data Science
DOWNLOAD
Author : Mike X Cohen
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-09-06
Practical Linear Algebra For Data Science written by Mike X Cohen and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-06 with Computers categories.
If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis
Practical Linear Algebra For Data Science
DOWNLOAD
Author : Mike Cohen
language : en
Publisher:
Release Date : 2022
Practical Linear Algebra For Data Science written by Mike Cohen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis.
Linear Algebra And Its Applications With R
DOWNLOAD
Author : Ruriko Yoshida
language : en
Publisher: CRC Press
Release Date : 2024-08-26
Linear Algebra And Its Applications With R written by Ruriko Yoshida and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-26 with Business & Economics categories.
The book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications.
Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10
Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Practical Linear Algebra
DOWNLOAD
Author : Gerald Farin
language : en
Publisher: CRC Press
Release Date : 2021-10-12
Practical Linear Algebra written by Gerald Farin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-12 with Mathematics categories.
Linear algebra is growing in importance. 3D entertainment, animations in movies and video games are developed using linear algebra. Animated characters are generated using equations straight out of this book. Linear algebra is used to extract knowledge from the massive amounts of data generated from modern technology. The Fourth Edition of this popular text introduces linear algebra in a comprehensive, geometric, and algorithmic way. The authors start with the fundamentals in 2D and 3D, then move on to higher dimensions, expanding on the fundamentals and introducing new topics, which are necessary for many real-life applications and the development of abstract thought. Applications are introduced to motivate topics. The subtitle, A Geometry Toolbox, hints at the book’s geometric approach, which is supported by many sketches and figures. Furthermore, the book covers applications of triangles, polygons, conics, and curves. Examples demonstrate each topic in action. This practical approach to a linear algebra course, whether through classroom instruction or self-study, is unique to this book. New to the Fourth Edition: Ten new application sections. A new section on change of basis. This concept now appears in several places. Chapters 14-16 on higher dimensions are notably revised. A deeper look at polynomials in the gallery of spaces. Introduces the QR decomposition and its relevance to least squares. Similarity and diagonalization are given more attention, as are eigenfunctions. A longer thread on least squares, running from orthogonal projections to a solution via SVD and the pseudoinverse. More applications for PCA have been added. More examples, exercises, and more on the kernel and general linear spaces. A list of applications has been added in Appendix A. The book gives instructors the option of tailoring the course for the primary interests of their students: mathematics, engineering, science, computer graphics, and geometric modeling.
Essential Math For Data Science
DOWNLOAD
Author : Thomas Nield
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-05-26
Essential Math For Data Science written by Thomas Nield and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.
Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market
Choosing Chinese Universities
DOWNLOAD
Author : Alice Y.C. Te
language : en
Publisher: Routledge
Release Date : 2022-10-07
Choosing Chinese Universities written by Alice Y.C. Te and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-07 with Education categories.
This book unpacks the complex dynamics of Hong Kong students’ choice in pursuing undergraduate education at the universities of Mainland China. Drawing on an empirical study based on interviews with 51 students, this book investigates how macro political/economic factors, institutional influences, parental influence, and students’ personal motivations have shaped students’ eventual choice of university. Building on Perna’s integrated model of college choice and Lee’s push-pull mobility model, this book conceptualizes that students’ border crossing from Hong Kong to Mainland China for higher education is a trans-contextualized negotiated choice under the "One Country, Two Systems" principle. The findings reveal that during the decision-making process, influencing factors have conditioned four archetypes of student choice: Pragmatists, Achievers, Averages, and Underachievers. The book closes by proposing an enhanced integrated model of college choice that encompasses both rational motives and sociological factors, and examines the theoretical significance and practical implications of the qualitative study. With its focus on student choice and experiences of studying in China, this book’s research and policy findings will interest researchers, university administrators, school principals, and teachers.
Mathematics For Machine Learning
DOWNLOAD
Author : Marc Peter Deisenroth
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-23
Mathematics For Machine Learning written by Marc Peter Deisenroth and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-23 with Computers categories.
Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.
Introduction To Applied Linear Algebra
DOWNLOAD
Author : Stephen Boyd
language : en
Publisher: Cambridge University Press
Release Date : 2018-06-07
Introduction To Applied Linear Algebra written by Stephen Boyd and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-07 with Business & Economics categories.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.