[PDF] Practical Mlops - eBooks Review

Practical Mlops


Practical Mlops
DOWNLOAD

Download Practical Mlops PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Mlops book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Practical Mlops


Practical Mlops
DOWNLOAD
Author : Noah Gift
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-09-14

Practical Mlops written by Noah Gift and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-14 with Computers categories.


Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models. Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start. You'll discover how to: Apply DevOps best practices to machine learning Build production machine learning systems and maintain them Monitor, instrument, load-test, and operationalize machine learning systems Choose the correct MLOps tools for a given machine learning task Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware



Practical Mlops


Practical Mlops
DOWNLOAD
Author : Noah Gift
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-09-14

Practical Mlops written by Noah Gift and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-14 with Computers categories.


Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models. Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start. You'll discover how to: Apply DevOps best practices to machine learning Build production machine learning systems and maintain them Monitor, instrument, load-test, and operationalize machine learning systems Choose the correct MLOps tools for a given machine learning task Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware



Engineering Mlops


Engineering Mlops
DOWNLOAD
Author : Emmanuel Raj
language : en
Publisher:
Release Date : 2021-04-19

Engineering Mlops written by Emmanuel Raj and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-19 with categories.


Engineering MLOps will help you get to grips with ML lifecycle management and MLOps implementation for your organization. This book presents comprehensive insights into MLOps coupled with real-world examples that will teach you how to write programs, train robust and scalable ML models, and build ML pipelines to train, deploy, and monitor ...



Machine Learning Engineering With Python


Machine Learning Engineering With Python
DOWNLOAD
Author : Andrew P. McMahon
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-11-05

Machine Learning Engineering With Python written by Andrew P. McMahon and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-05 with Computers categories.


Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.



Pragmatic Ai


Pragmatic Ai
DOWNLOAD
Author : Noah Gift
language : en
Publisher: Addison-Wesley Professional
Release Date : 2018-07-12

Pragmatic Ai written by Noah Gift and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-12 with Computers categories.


Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Machine Learning Design Patterns


Machine Learning Design Patterns
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: O'Reilly Media
Release Date : 2020-10-15

Machine Learning Design Patterns written by Valliappa Lakshmanan and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-15 with Computers categories.


The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly



Practical Simulations For Machine Learning


Practical Simulations For Machine Learning
DOWNLOAD
Author : Paris Buttfield-Addison
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-06-07

Practical Simulations For Machine Learning written by Paris Buttfield-Addison and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-07 with Computers categories.


Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can synthesize artificial data using simulations to train traditional machine learning models.That's just the beginning. With this practical book, you'll explore the possibilities of simulation- and synthesis-based machine learning and AI, concentrating on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. You'll learn how to: Design an approach for solving ML and AI problems using simulations with the Unity engine Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning models Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization Train a variety of ML models using different approaches Enable ML tools to work with industry-standard game development tools, using PyTorch, and the Unity ML-Agents and Perception Toolkits



Beginning Mlops With Mlflow


Beginning Mlops With Mlflow
DOWNLOAD
Author : Sridhar Alla
language : en
Publisher: Apress
Release Date : 2020-12-08

Beginning Mlops With Mlflow written by Sridhar Alla and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-08 with Computers categories.


Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. ​This book guides you through the process of data analysis, model construction, and training. The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks. What You Will Learn Perform basic data analysis and construct models in scikit-learn and PySpark Train, test, and validate your models (hyperparameter tuning) Know what MLOps is and what an ideal MLOps setup looks like Easily integrate MLFlow into your existing or future projects Deploy your models and perform predictions with them on the cloud Who This Book Is For Data scientists and machine learning engineers who want to learn MLOps and know how to operationalize their models



Practical Machine Learning With H2o


Practical Machine Learning With H2o
DOWNLOAD
Author : Darren Cook
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-05

Practical Machine Learning With H2o written by Darren Cook and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-05 with Computers categories.


Machine learning has finally come of age. With H2O software, you can perform machine learning and data analysis using a simple open source framework that’s easy to use, has a wide range of OS and language support, and scales for big data. This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms. If you’re familiar with R or Python, know a bit of statistics, and have some experience manipulating data, author Darren Cook will take you through H2O basics and help you conduct machine-learning experiments on different sample data sets. You’ll explore several modern machine-learning techniques such as deep learning, random forests, unsupervised learning, and ensemble learning. Learn how to import, manipulate, and export data with H2O Explore key machine-learning concepts, such as cross-validation and validation data sets Work with three diverse data sets, including a regression, a multinomial classification, and a binomial classification Use H2O to analyze each sample data set with four supervised machine-learning algorithms Understand how cluster analysis and other unsupervised machine-learning algorithms work