[PDF] Practical Multiscaling - eBooks Review

Practical Multiscaling


Practical Multiscaling
DOWNLOAD

Download Practical Multiscaling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Multiscaling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Practical Multiscaling


Practical Multiscaling
DOWNLOAD
Author : Jacob Fish
language : en
Publisher: John Wiley & Sons
Release Date : 2013-09-03

Practical Multiscaling written by Jacob Fish and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-03 with Science categories.


Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.



Multiscale Modelling And Optimisation Of Materials And Structures


Multiscale Modelling And Optimisation Of Materials And Structures
DOWNLOAD
Author : Tadeusz Burczynski
language : en
Publisher: John Wiley & Sons
Release Date : 2022-05-19

Multiscale Modelling And Optimisation Of Materials And Structures written by Tadeusz Burczynski and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-19 with Technology & Engineering categories.


Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.



Multiscale Materials Modeling For Nanomechanics


Multiscale Materials Modeling For Nanomechanics
DOWNLOAD
Author : Christopher R. Weinberger
language : en
Publisher: Springer
Release Date : 2016-08-30

Multiscale Materials Modeling For Nanomechanics written by Christopher R. Weinberger and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-30 with Technology & Engineering categories.


This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.



Multiscale Model Reduction


Multiscale Model Reduction
DOWNLOAD
Author : Eric Chung
language : en
Publisher: Springer Nature
Release Date : 2023-06-07

Multiscale Model Reduction written by Eric Chung and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-07 with Mathematics categories.


This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.



Virtual Element Methods In Engineering Sciences


Virtual Element Methods In Engineering Sciences
DOWNLOAD
Author : Peter Wriggers
language : en
Publisher: Springer Nature
Release Date : 2023-11-29

Virtual Element Methods In Engineering Sciences written by Peter Wriggers and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-29 with Technology & Engineering categories.


This book provides a comprehensive treatment of the virtual element method (VEM) for engineering applications, focusing on its application in solid mechanics. Starting with a continuum mechanics background, the book establishes the necessary foundation for understanding the subsequent chapters. It then delves into the VEM's Ansatz functions and projection techniques, both for solids and the Poisson equation, which are fundamental to the method. The book explores the virtual element formulation for elasticity problems, offering insights into its advantages and capabilities. Moving beyond elasticity, the VEM is extended to problems in dynamics, enabling the analysis of dynamic systems with accuracy and efficiency. The book also covers the virtual element formulation for finite plasticity, providing a framework for simulating the behavior of materials undergoing plastic deformation. Furthermore, the VEM is applied to thermo-mechanical problems, where it allows for the investigation of coupled thermal and mechanical effects. The book dedicates a significant portion to the virtual elements for fracture processes, presenting techniques to model and analyze fractures in engineering structures. It also addresses contact problems, showcasing the VEM's effectiveness in dealing with contact phenomena. The virtual element method's versatility is further demonstrated through its application in homogenization, offering a means to understand the effective behavior of composite materials and heterogeneous structures. Finally, the book concludes with the virtual elements for beams and plates, exploring their application in these specific structural elements. Throughout the book, the authors emphasize the advantages of the virtual element method over traditional finite element discretization schemes, highlighting its accuracy, flexibility, and computational efficiency in various engineering contexts.



Computational Materials Engineering


Computational Materials Engineering
DOWNLOAD
Author : Maciej Pietrzyk
language : en
Publisher: Butterworth-Heinemann
Release Date : 2015-07-14

Computational Materials Engineering written by Maciej Pietrzyk and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-14 with Technology & Engineering categories.


Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency. Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales. The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application. Presents the numerical approaches for high-accuracy calculations Provides researchers with essential information on the methods capable of exact representation of microstructure morphology Helpful to those working on model classification, computing costs, heterogeneous hardware, modeling efficiency, numerical algorithms, metamodeling, sensitivity analysis, inverse method, clusters, heterogeneous architectures, grid environments, finite element, flow stress, internal variable method, microstructure evolution, and more Discusses several techniques to overcome modeling and simulation limitations, including distributed computing methods, (hyper) reduced-order-modeling techniques, regularization, statistical representation of material microstructure, and the Gaussian process Covers both software and hardware capabilities in the area of improved computer efficiency and reduction of computing time



Multiscale Modeling For Process Safety Applications


Multiscale Modeling For Process Safety Applications
DOWNLOAD
Author : Arnab Chakrabarty
language : en
Publisher: Butterworth-Heinemann
Release Date : 2015-11-29

Multiscale Modeling For Process Safety Applications written by Arnab Chakrabarty and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-29 with Technology & Engineering categories.


Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader



Multiscale Analysis Of Deformation And Failure Of Materials


Multiscale Analysis Of Deformation And Failure Of Materials
DOWNLOAD
Author : Jinghong Fan
language : en
Publisher: John Wiley & Sons
Release Date : 2011-06-28

Multiscale Analysis Of Deformation And Failure Of Materials written by Jinghong Fan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-28 with Technology & Engineering categories.


Presenting cutting-edge research and development within multiscale modeling techniques and frameworks, Multiscale Analysis of Deformation and Failure of Materials systematically describes the background, principles and methods within this exciting new & interdisciplinary field. The author’s approach emphasizes the principles and methods of atomistic simulation and its transition to the nano and sub-micron scale of a continuum, which is technically important for nanotechnology and biotechnology. He also pays close attention to multiscale analysis across the micro/meso/macroscopy of a continuum, which has a broad scope of applications encompassing different disciplines and practices, and is an essential extension of mesomechanics. Of equal interest to engineers, scientists, academics and students, Multiscale Analysis of Deformation and Failure of Materials is a multidisciplinary text relevant to those working in the areas of materials science, solid and computational mechanics, bioengineering and biomaterials, and aerospace, automotive, civil, and environmental engineering. Provides a deep understanding of multiscale analysis and its implementation Shows in detail how multiscale models can be developed from practical problems and how to use the multiscale methods and software to carry out simulations Discusses two interlinked categories of multiscale analysis; analysis spanning from the atomistic to the micro-continuum scales, and analysis across the micro/meso/macro scale of continuum.



Recent Advances In Smart Self Healing Polymers And Composites


Recent Advances In Smart Self Healing Polymers And Composites
DOWNLOAD
Author : Guoqiang Li
language : en
Publisher: Elsevier
Release Date : 2015-06-01

Recent Advances In Smart Self Healing Polymers And Composites written by Guoqiang Li and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-01 with Technology & Engineering categories.


Recent Advances in Smart Self-Healing Polymers and Composites examines the advances made in smart materials over the last few decades and their significant applications in aerospace, automotive, civil, mechanical, medical, and communication engineering fields. Based on a thorough review of the literature, the book identifies “smart self-healing polymers and composites as one of the most popular, challenging, and promising areas of research. Readers will find valuable information compiled by a large pool of researchers who not only studied the latest datasets, but also reached out to leading contributors for insights and forward-thinking analogies. Examines the advances made in smart materials over the last few decades Presents significant applications in aerospace, automotive, civil, mechanical, medical, and communication engineering fields Compiled by a large pool of researchers who not only studied the latest datasets, but also reached out to leading contributors for insights and forward-thinking analogies



Finite Element Modeling Of Multiscale Transport Phenomena


Finite Element Modeling Of Multiscale Transport Phenomena
DOWNLOAD
Author : Vahid Nassehi
language : en
Publisher: World Scientific Publishing Company
Release Date : 2010-10-13

Finite Element Modeling Of Multiscale Transport Phenomena written by Vahid Nassehi and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-13 with Technology & Engineering categories.


Complex multiscale systems such as combined free or porous flow regimes and transport processes governed by combined diffusion, convection and reaction mechanisms, which cannot be readily modeled using traditional methods, can be solved by multiscale or stabilized finite element schemes.Due to the importance of the described multiscale processes in applications such as separation processes, reaction engineering and environmental systems analysis, a sound knowledge of such methods is essential for many researchers and design engineers who wish to develop reliable solutions for industrially relevant problems. The main scope of this book is to provide an authoritative description of recent developments in the field of finite element analysis, with a particular emphasis on the multiscale finite element modeling of transport phenomena and flow problem./a