[PDF] Practical R 4 - eBooks Review

Practical R 4


Practical R 4
DOWNLOAD

Download Practical R 4 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical R 4 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Practical R For Mass Communication And Journalism


Practical R For Mass Communication And Journalism
DOWNLOAD
Author : Sharon Machlis
language : en
Publisher: CRC Press
Release Date : 2018-12-21

Practical R For Mass Communication And Journalism written by Sharon Machlis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-21 with Mathematics categories.


Do you want to use R to tell stories? This book was written for you—whether you already know some R or have never coded before. Most R texts focus only on programming or statistical theory. Practical R for Mass Communication and Journalism gives you ideas, tools, and techniques for incorporating data and visualizations into your narratives. You’ll see step by step how to: Analyze airport flight delays, restaurant inspections, and election results Map bank locations, median incomes, and new voting districts Compare campaign contributions to final election results Extract data from PDFs Whip messy data into shape for analysis Scrape data from a website Create graphics ranging from simple, static charts to interactive visualizations for the Web If you work or plan to work in a newsroom, government office, non-profit policy organization, or PR office, Practical R for Mass Communication and Journalism will help you use R in your world. This book has a companion website with code, links to additional resources, and searchable tables by function and task. Sharon Machlis is the author of Computerworld’s Beginner’s Guide to R, host of InfoWorld’s Do More With R video screencast series, admin for the R for Journalists Google Group, and is well known among Twitter users who follow the #rstats hashtag. She is Director of Editorial Data and Analytics at IDG Communications (parent company of Computerworld, InfoWorld, PC World and Macworld, among others) and a frequent speaker at data journalism and R conferences.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Practical Machine Learning In R


Practical Machine Learning In R
DOWNLOAD
Author : Fred Nwanganga
language : en
Publisher: John Wiley & Sons
Release Date : 2020-05-27

Practical Machine Learning In R written by Fred Nwanganga and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-27 with Computers categories.


Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.



Practical Data Science With R


Practical Data Science With R
DOWNLOAD
Author : Nina Zumel
language : en
Publisher: Manning Publications
Release Date : 2014-04-10

Practical Data Science With R written by Nina Zumel and has been published by Manning Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-10 with Computers categories.


Summary Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day data science tasks without a lot of academic theory or advanced mathematics. Practical Data Science with R shows you how to apply the R programming language and useful statistical techniques to everyday business situations. Using examples from marketing, business intelligence, and decision support, it shows you how to design experiments (such as A/B tests), build predictive models, and present results to audiences of all levels. This book is accessible to readers without a background in data science. Some familiarity with basic statistics, R, or another scripting language is assumed. What's Inside Data science for the business professional Statistical analysis using the R language Project lifecycle, from planning to delivery Numerous instantly familiar use cases Keys to effective data presentations About the Authors Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com. Table of Contents PART 1 INTRODUCTION TO DATA SCIENCE The data science process Loading data into R Exploring data Managing data PART 2 MODELING METHODS Choosing and evaluating models Memorization methods Linear and logistic regression Unsupervised methods Exploring advanced methods PART 3 DELIVERING RESULTS Documentation and deployment Producing effective presentations



R For Political Data Science


R For Political Data Science
DOWNLOAD
Author : Francisco Urdinez
language : en
Publisher: CRC Press
Release Date : 2020-11-17

R For Political Data Science written by Francisco Urdinez and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-17 with Political Science categories.


R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. Key features: Each chapter has the most up-to-date and simple option available for each task, assuming minimal prerequisites and no previous experience in R Makes extensive use of the Tidyverse, the group of packages that has revolutionized the use of R Provides a step-by-step guide that you can replicate using your own data Includes exercises in every chapter for course use or self-study Focuses on practical-based approaches to statistical inference rather than mathematical formulae Supplemented by an R package, including all data As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions.



Practical Statistics In R For Comparing Groups


Practical Statistics In R For Comparing Groups
DOWNLOAD
Author : Alboukadel Kassambara
language : en
Publisher:
Release Date : 2019-11-28

Practical Statistics In R For Comparing Groups written by Alboukadel Kassambara and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-28 with categories.


This R Statistics book provides a solid step-by-step practical guide to statistical inference for comparing groups means using the R software. Additionally, we developed an R package named rstatix, which provides a simple and intuitive pipe-friendly framework, coherent with the `tidyverse` design philosophy, for computing the most common R statistical analyses, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses, outliers identification and more. This book is designed to get you doing the statistical tests in R as quick as possible. The book focuses on implementation and understanding of the methods, without having to struggle through pages of mathematical proofs. You will be guided through the steps of summarizing and visualizing the data, checking the assumptions and performing statistical tests in R, interpreting and reporting the results. The main parts of the book include: PART I. Statistical tests and assumptions for the comparison of groups means; PART II. comparing two means (t-test, Wilcoxon test, Sign test); PART III. comparing multiple means (ANOVA - Analysis of Variance for independent measures, repeated measures ANOVA, mixed ANOVA, ANCOVA and MANOVA, Kruskal-Wallis test and Friedman test).



Practical Machine Learning With R


Practical Machine Learning With R
DOWNLOAD
Author : Brindha Priyadarshini Jeyaraman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-08-30

Practical Machine Learning With R written by Brindha Priyadarshini Jeyaraman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-30 with Computers categories.


Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key FeaturesGain a comprehensive overview of different machine learning techniquesExplore various methods for selecting a particular algorithmImplement a machine learning project from problem definition through to the final modelBook Description With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way. Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you’ll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you’ll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them. By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it. What you will learnDefine a problem that can be solved by training a machine learning modelObtain, verify and clean data before transforming it into the correct format for usePerform exploratory analysis and extract features from dataBuild models for neural net, linear and non-linear regression, classification, and clusteringEvaluate the performance of a model with the right metricsImplement a classification problem using the neural net packageEmploy a decision tree using the random forest libraryWho this book is for If you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learning and apply it to a real dataset using R, this book is just what you need. Data scientists who use Python and want to implement their machine learning solutions using R will also find this book very useful. The book will also enable novice programmers to start their journey in data science. Basic knowledge of any programming language is all you need to get started.



Practical R 4


Practical R 4
DOWNLOAD
Author : Jon Westfall
language : en
Publisher: Apress
Release Date : 2021-05-14

Practical R 4 written by Jon Westfall and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-14 with Computers categories.


Get started with an accelerated introduction to the R ecosystem, programming language, and tools including R script and RStudio. This book teaches you how to get data into R and how to work with that data using R. Once grounded in the fundamentals, the rest of Practical R 4 dives into specific projects and examples starting with running and analyzing a survey using R and LimeSurvey. Next, you'll carry out advanced statistical analysis using R and Mouselab Web. Then, you’ll see how R can work for you without statistics, including how R can be used to automate data formatting, manipulation, reporting, and custom functions. The final part of this book discusses using R on a server; you’ll build a script with R that can run an RStudio Server and monitor a report source for changes to alert the user when something has changed. This project includes both regular email alerting and push notification. And, finally, you’ll use R to create a customized daily rundown report of a person's most important information such as a weather report, daily calendar, to-do's and more. This demonstrates how to automate such a process so that every morning, the user navigates to the same web page and gets the updated report. What You Will Learn Set up and run an R script, including installation on a new machine and downloading and configuring R Turn any machine into a powerful data analytics platform accessible from anywhere with RStudio Server Write basic R scripts and modify existing scripts to suit your own needs Create basic HTML reports in R, inserting information as needed Build a basic R package and distribute it Who This Book Is For Some prior exposure to statistics, programming, and maybe SAS is recommended but not required.



Practical Statistics For Data Scientists


Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10

Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.


Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data



R Graphics Cookbook


R Graphics Cookbook
DOWNLOAD
Author : Winston Chang
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013

R Graphics Cookbook written by Winston Chang and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Computers categories.


"Practical recipes for visualizing data"--Cover.