[PDF] Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition - eBooks Review

Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition


Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition
DOWNLOAD

Download Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition


Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition
DOWNLOAD
Author : Aurélien Géron
language : de
Publisher:
Release Date : 2020

Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow 2nd Edition written by Aurélien Géron and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Eine Reihe technischer Durchbrüche beim Deep Learning haben das gesamte Gebiet des maschinellen Lernens in den letzten Jahren beflügelt. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses praxisorientierte Buch zeigt Ihnen wie. Mit konkreten Beispielen, einem Minimum an Theorie und zwei unmittelbar anwendbaren Python-Frameworks - Scikit-Learn und TensorFlow 2 - verhilft Ihnen der Autor Aurélien Géron zu einem intuitiven Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme. Sie lernen eine Vielzahl von Techniken kennen, beginnend mit einfacher linearer Regression bis hin zu Deep Neural Networks. Die in jedem Kapitel enthaltenen Übungen helfen Ihnen, das Gelernte in die Praxis umzusetzen. Um direkt zu starten, benötigen Sie lediglich etwas Programmiererfahrung.



Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow


Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : de
Publisher: O'Reilly
Release Date : 2023-09-01

Praxiseinstieg Machine Learning Mit Scikit Learn Keras Und Tensorflow written by Aurélien Géron and has been published by O'Reilly this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-01 with Computers categories.


Aktualisierte und erweiterte 3. Auflage des Bestsellers zu TensorFlow und Deep Learning Behandelt jetzt viele neue Features von Scikit-Learn sowie die Keras-Tuner-Bibliothek und die NLP-Bibliothek Transformers von Hugging Face Führt Sie methodisch geschickt in die Basics des Machine Learning mit Scikit-Learn ein und vermittelt darauf aufbauend Deep-Learning-Techniken mit Keras und TensorFlow Mit zahlreiche Übungen und Lösungen Durchbrüche beim Deep Learning haben das maschinelle Lernen in den letzten Jahren eindrucksvoll vorangebracht. Inzwischen können sogar Programmiererinnen und Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses praxisorientierte Buch, jetzt aktualisiert und nochmals erweitert, zeigt Ihnen wie. Mit konkreten Beispielen, einem Minimum an Theorie und unmittelbar anwendbaren Python-Frameworks – Scikit-Learn, Keras und TensorFlow – verhilft Ihnen Aurélien Géron zu einem intuitiven Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme. Sie lernen eine Vielzahl von Techniken kennen, beginnend mit einfacher linearer Regression bis hin zu Deep Neural Networks. Die in jedem Kapitel enthaltenen Übungen helfen Ihnen, das Gelernte in die Praxis umzusetzen. Um direkt zu starten, benötigen Sie lediglich etwas Programmiererfahrung.



Hands On Machine Learning With Scikit Learn Keras And Tensorflow


Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-05

Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.


Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets



Hands On Machine Learning With Scikit Learn Keras And Tensorflow 2nd Edition


Hands On Machine Learning With Scikit Learn Keras And Tensorflow 2nd Edition
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher:
Release Date : 2019

Hands On Machine Learning With Scikit Learn Keras And Tensorflow 2nd Edition written by Aurélien Géron and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks-Scikit-Learn and TensorFlow-author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets.



Hands On Machine Learning With Scikit Learn And Tensorflow


Hands On Machine Learning With Scikit Learn And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-03-13

Hands On Machine Learning With Scikit Learn And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-13 with Computers categories.


Graphics in this book are printed in black and white. Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details



Machine Learning Mit Python Und Keras Tensorflow 2 Und Scikit Learn


Machine Learning Mit Python Und Keras Tensorflow 2 Und Scikit Learn
DOWNLOAD
Author : Sebastian Raschka / Vahid Mirjalili
language : de
Publisher: MITP-Verlags GmbH & Co. KG
Release Date : 2021-03-03

Machine Learning Mit Python Und Keras Tensorflow 2 Und Scikit Learn written by Sebastian Raschka / Vahid Mirjalili and has been published by MITP-Verlags GmbH & Co. KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-03 with Computers categories.


• Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings • Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib • Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert. Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning. Ein sicherer Umgang mit Python wird vorausgesetzt.



Hands On Machine Learning With Scikit Learn Keras And Tensorflow


Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-10-04

Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-04 with Computers categories.


Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use Scikit-learn to track an example ML project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning



Advanced Deep Learning With Tensorflow 2 And Keras Second Edition


Advanced Deep Learning With Tensorflow 2 And Keras Second Edition
DOWNLOAD
Author : ROWEL. ATIENZA
language : en
Publisher:
Release Date : 2020-02-28

Advanced Deep Learning With Tensorflow 2 And Keras Second Edition written by ROWEL. ATIENZA and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with categories.




Machine Learning With Tensorflow Second Edition


Machine Learning With Tensorflow Second Edition
DOWNLOAD
Author : Mattmann A. Chris
language : en
Publisher: Manning
Release Date : 2021-02-02

Machine Learning With Tensorflow Second Edition written by Mattmann A. Chris and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-02 with Computers categories.


Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Summary Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Supercharge your data analysis with machine learning! ML algorithms automatically improve as they process data, so results get better over time. You don’t have to be a mathematician to use ML: Tools like Google’s TensorFlow library help with complex calculations so you can focus on getting the answers you need. About the book Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You’ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10. What's inside Machine Learning with TensorFlow Choosing the best ML approaches Visualizing algorithms with TensorBoard Sharing results with collaborators Running models in Docker About the reader Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x. About the author Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIG 1 A machine-learning odyssey 2 TensorFlow essentials PART 2 - CORE LEARNING ALGORITHMS 3 Linear regression and beyond 4 Using regression for call-center volume prediction 5 A gentle introduction to classification 6 Sentiment classification: Large movie-review dataset 7 Automatically clustering data 8 Inferring user activity from Android accelerometer data 9 Hidden Markov models 10 Part-of-speech tagging and word-sense disambiguation PART 3 - THE NEURAL NETWORK PARADIGM 11 A peek into autoencoders 12 Applying autoencoders: The CIFAR-10 image dataset 13 Reinforcement learning 14 Convolutional neural networks 15 Building a real-world CNN: VGG-Face ad VGG-Face Lite 16 Recurrent neural networks 17 LSTMs and automatic speech recognition 18 Sequence-to-sequence models for chatbots 19 Utility landscape



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-12

Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.


Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book Description Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.