[PDF] Prediction Learning And Games - eBooks Review

Prediction Learning And Games


Prediction Learning And Games
DOWNLOAD

Download Prediction Learning And Games PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Prediction Learning And Games book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Prediction Learning And Games


Prediction Learning And Games
DOWNLOAD
Author : Nicolo Cesa-Bianchi
language : en
Publisher: Cambridge University Press
Release Date : 2006-03-13

Prediction Learning And Games written by Nicolo Cesa-Bianchi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-13 with Computers categories.


This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.



Prediction Learning And Games


Prediction Learning And Games
DOWNLOAD
Author : Nicolò Cesa-Bianchi
language : en
Publisher:
Release Date : 2006

Prediction Learning And Games written by Nicolò Cesa-Bianchi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Computer algorithms categories.


The central theme here is a model of prediction using expert advice, a general framework within which many related problems can be cast and discussed, including repeated game playing, adaptive data compression, sequential investment in the stock market, and sequential pattern analysis.



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Conformal Prediction For Reliable Machine Learning


Conformal Prediction For Reliable Machine Learning
DOWNLOAD
Author : Vineeth Balasubramanian
language : en
Publisher: Newnes
Release Date : 2014-04-23

Conformal Prediction For Reliable Machine Learning written by Vineeth Balasubramanian and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-23 with Computers categories.


The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection



Deep Learning And The Game Of Go


Deep Learning And The Game Of Go
DOWNLOAD
Author : Kevin Ferguson
language : en
Publisher: Simon and Schuster
Release Date : 2019-01-06

Deep Learning And The Game Of Go written by Kevin Ferguson and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-06 with Computers categories.


Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning



Games Learning And Society


Games Learning And Society
DOWNLOAD
Author : Constance Steinkuehler
language : en
Publisher: Cambridge University Press
Release Date : 2012-06-11

Games Learning And Society written by Constance Steinkuehler and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-11 with Computers categories.


Leaders in the field provide an introduction to video games and learning, including essays on game design and game culture.



Prediction Learning And Games


Prediction Learning And Games
DOWNLOAD
Author : Nicolo Cesa-Bianchi
language : en
Publisher: Cambridge University Press
Release Date : 2006-03-13

Prediction Learning And Games written by Nicolo Cesa-Bianchi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-13 with Computers categories.


This important new text and reference for researchers and students in machine learning, game theory, statistics and information theory offers the first comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections. Old and new forecasting methods are described in a mathematically precise way in order to characterize their theoretical limitations and possibilities.



Hands On Reinforcement Learning For Games


Hands On Reinforcement Learning For Games
DOWNLOAD
Author : Micheal Lanham
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-03

Hands On Reinforcement Learning For Games written by Micheal Lanham and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-03 with Computers categories.


Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow Key FeaturesGet to grips with the different reinforcement and DRL algorithms for game developmentLearn how to implement components such as artificial agents, map and level generation, and audio generationGain insights into cutting-edge RL research and understand how it is similar to artificial general researchBook Description With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications. What you will learnUnderstand how deep learning can be integrated into an RL agentExplore basic to advanced algorithms commonly used in game developmentBuild agents that can learn and solve problems in all types of environmentsTrain a Deep Q-Network (DQN) agent to solve the CartPole balancing problemDevelop game AI agents by understanding the mechanism behind complex AIIntegrate all the concepts learned into new projects or gaming agentsWho this book is for If you’re a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.



Artificial Intelligence And Games


Artificial Intelligence And Games
DOWNLOAD
Author : Georgios N. Yannakakis
language : en
Publisher: Springer
Release Date : 2018-02-17

Artificial Intelligence And Games written by Georgios N. Yannakakis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-17 with Computers categories.


This is the first textbook dedicated to explaining how artificial intelligence (AI) techniques can be used in and for games. After introductory chapters that explain the background and key techniques in AI and games, the authors explain how to use AI to play games, to generate content for games and to model players. The book will be suitable for undergraduate and graduate courses in games, artificial intelligence, design, human-computer interaction, and computational intelligence, and also for self-study by industrial game developers and practitioners. The authors have developed a website (http://www.gameaibook.org) that complements the material covered in the book with up-to-date exercises, lecture slides and reading.



Games User Research


Games User Research
DOWNLOAD
Author : Anders Drachen
language : en
Publisher: Oxford University Press
Release Date : 2018

Games User Research written by Anders Drachen and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Computers categories.


Games live and die commercially on the player experience. Games User Research is collectively the way we optimise the quality of the user experience (UX) in games, working with all aspects of a game from the mechanics and interface, visuals and art, interaction and progression, making sure every element works in concert and supports the game UX. This means that Games User Research is essential and integral to the production of games and to shape the experience of players. Today, Games User Research stands as the primary pathway to understanding players and how to design, build, and launch games that provide the right game UX. Until now, the knowledge in Games User Research and Game UX has been fragmented and there were no comprehensive, authoritative resources available. This book bridges the current gap of knowledge in Games User Research, building the go-to resource for everyone working with players and games or other interactive entertainment products. It is accessible to those new to Games User Research, while being deeply comprehensive and insightful for even hardened veterans of the game industry. In this book, dozens of veterans share their wisdom and best practices on how to plan user research, obtain the actionable insights from users, conduct user-centred testing, which methods to use when, how platforms influence user research practices, and much, much more.